A characterization of regular embeddings of n-dimensional cubes

One of the central problems in topological graph theory is the problem of the classification of graph embeddings into surfaces exhibiting a maximum number of symmetries. These embeddings are called regular. In particular, Du, Kwak and Nedela (2005) classified regular embeddings of n-dimensional cubes Q"n for n odd. For even n Kwon has constructed a large family of regular embeddings with an exponential growth with respect to n. The classification was recently extended by J. Xu to numbers n=2m, where m is odd by showing that these embeddings coincide with the embeddings constructed by Kwon (2004) [21]. In the present paper we give a characterization of regular embeddings of Q"n. We employ it to derive structural results on the automorphism groups of such embeddings as well as to construct a family of embeddings not covered by the Kwon embeddings.

[1]  Martin Skoviera,et al.  Regular Maps from Voltage Assignments and Exponent Groups , 1997, Eur. J. Comb..

[2]  Gareth A. Jones,et al.  Regular embeddings of complete bipartite graphs: classification and enumeration , 2009, 0911.4340.

[3]  Carsten Thomassen,et al.  Graphs on Surfaces , 2001, Johns Hopkins series in the mathematical sciences.

[4]  Jin Ho Kwak,et al.  Classification of regular embeddings of hypercubes of odd dimension , 2007, Discret. Math..

[5]  Martin Skoviera,et al.  Regular embeddings of complete bipartite graphs , 2002, Discret. Math..

[6]  Martin Skoviera,et al.  Regular Embeddings of Canonical Double Coverings of Graphs , 1996, J. Comb. Theory, Ser. B.

[7]  Young Soo Kwon New regular embeddings of n-cubes Q n , 2004 .

[8]  Jozef Širáň,et al.  Characterisation of Graphs which Underlie Regular Maps on Closed Surfaces , 1999 .

[9]  Jing Xu,et al.  A classification of regular embeddings of hypercubes Q2m with m odd , 2007 .

[10]  L. Heffter,et al.  Ueber metacyklische Gruppen und Nachbarconfigurationen , 1898 .

[11]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[12]  Jonathan L. Gross,et al.  Topological Graph Theory , 1987, Handbook of Graph Theory.

[13]  Martin Skoviera,et al.  Regular embeddings of Kn, n where n is an odd prime power , 2007, Eur. J. Comb..

[14]  Young Soo Kwon New regular embeddings of n‐cubes Qn , 2004, J. Graph Theory.

[15]  Jin Ho Kwak,et al.  Regular embeddings of complete multipartite graphs , 2005, Eur. J. Comb..

[16]  Martin Skoviera,et al.  Regular embeddings of Kn, n where n is a power of 2. I: Metacyclic case , 2007, Eur. J. Comb..

[17]  Young Soo Kwon,et al.  Non-existence of nonorientable regular embeddings of n-dimensional cubes , 2007, Discret. Math..

[18]  Martin Skoviera,et al.  Complete bipartite graphs with a unique regular embedding , 2008, J. Comb. Theory, Ser. B.

[19]  Young Soo Kwon,et al.  Regular orientable embeddings of complete bipartite graphs , 2005 .

[20]  Young Soo Kwon,et al.  Classification of reflexible regular embeddings and self-Petrie dual regular embeddings of complete bipartite graphs , 2008, Discret. Math..

[21]  Roman Nedela,et al.  A Classification of Regular Embeddings of Graphs of Order a Product of Two Primes , 2004 .

[22]  Gareth A. Jones,et al.  Regular orientable imbeddings of complete graphs , 1985, J. Comb. Theory B.