Automatic Design of a Hyper-Heuristic Framework With Gene Expression Programming for Combinatorial Optimization Problems

Hyper-heuristic approaches aim to automate heuristic design in order to solve multiple problems instead of designing tailor-made methodologies for individual problems. Hyper-heuristics accomplish this through a high-level heuristic (heuristic selection mechanism and an acceptance criterion). This automates heuristic selection, deciding whether to accept or reject the returned solution. The fact that different problems, or even instances, have different landscape structures and complexity, the design of efficient high-level heuristics can have a dramatic impact on hyper-heuristic performance. In this paper, instead of using human knowledge to design the high-level heuristic, we propose a gene expression programming algorithm to automatically generate, during the instance-solving process, the high-level heuristic of the hyper-heuristic framework. The generated heuristic takes information (such as the quality of the generated solution and the improvement made) from the current problem state as input and decides which low-level heuristic should be selected and the acceptance or rejection of the resultant solution. The benefit of this framework is the ability to generate, for each instance, different high-level heuristics during the problem-solving process. Furthermore, in order to maintain solution diversity, we utilize a memory mechanism that contains a population of both high-quality and diverse solutions that is updated during the problem-solving process. The generality of the proposed hyper-heuristic is validated against six well-known combinatorial optimization problems, with very different landscapes, provided by the HyFlex software. Empirical results, comparing the proposed hyper-heuristic with state-of-the-art hyper-heuristics, conclude that the proposed hyper-heuristic generalizes well across all domains and achieves competitive, if not superior, results for several instances on all domains.

[1]  Gabriela Ochoa,et al.  A HyFlex Module for the Permutation Flow Shop Problem , 2010 .

[2]  Paolo Toth,et al.  The Vehicle Routing Problem , 2002, SIAM monographs on discrete mathematics and applications.

[3]  Bruce A. Robinson,et al.  Self-Adaptive Multimethod Search for Global Optimization in Real-Parameter Spaces , 2009, IEEE Transactions on Evolutionary Computation.

[4]  Graham Kendall,et al.  Grammatical Evolution Hyper-Heuristic for Combinatorial Optimization Problems , 2013, IEEE Transactions on Evolutionary Computation.

[5]  Ponnuthurai N. Suganthan,et al.  Guest Editorial Special Issue on Differential Evolution , 2011, IEEE Transactions on Evolutionary Computation.

[6]  Cláudio F. Lima,et al.  Adaptive Population Sizing Schemes in Genetic Algorithms , 2007, Parameter Setting in Evolutionary Algorithms.

[7]  Gabriela Ochoa,et al.  A HyFlex Module for the One Dimensional Bin Packing Problem , 2011 .

[8]  Riccardo Poli,et al.  Evolving Problems to Learn About Particle Swarm Optimizers and Other Search Algorithms , 2006, IEEE Transactions on Evolutionary Computation.

[9]  Fan Xue,et al.  Pearl hunter: a cross-domain hyper-heuristic that compiles iterated local search algorithms , 2011 .

[10]  Bernhard Sendhoff,et al.  A Unified Framework for Symbiosis of Evolutionary Mechanisms with Application to Water Clusters Potential Model Design , 2012, IEEE Computational Intelligence Magazine.

[11]  Mauro Brunato,et al.  R-EVO: A Reactive Evolutionary Algorithm for the Maximum Clique Problem , 2011, IEEE Transactions on Evolutionary Computation.

[12]  Zbigniew Michalewicz,et al.  Parameter Control in Evolutionary Algorithms , 2007, Parameter Setting in Evolutionary Algorithms.

[13]  Nhu Binh Ho,et al.  Evolving dispatching rules using genetic programming for solving multi-objective flexible job-shop problems , 2008, Comput. Ind. Eng..

[14]  Frédéric Saubion,et al.  What Is Autonomous Search , 2011 .

[15]  A. E. Eiben,et al.  Efficient relevance estimation and value calibration of evolutionary algorithm parameters , 2007, 2007 IEEE Congress on Evolutionary Computation.

[16]  Christian Blum,et al.  Hybrid metaheuristics in combinatorial optimization: A survey , 2011, Appl. Soft Comput..

[17]  Ulrich W. Thonemann,et al.  Optimizing simulated annealing schedules with genetic programming , 1996 .

[18]  Peter I. Cowling,et al.  Hyperheuristics: Recent Developments , 2008, Adaptive and Multilevel Metaheuristics.

[19]  Michel Gendreau,et al.  Hyper-heuristics: a survey of the state of the art , 2013, J. Oper. Res. Soc..

[20]  Andy J. Keane,et al.  Meta-Lamarckian learning in memetic algorithms , 2004, IEEE Transactions on Evolutionary Computation.

[21]  Edmund K. Burke,et al.  Hybridizations within a graph-based hyper-heuristic framework for university timetabling problems , 2009, J. Oper. Res. Soc..

[22]  El-Ghazali Talbi,et al.  COSEARCH: A Parallel Cooperative Metaheuristic , 2006, J. Math. Model. Algorithms.

[23]  Eugene L. Lawler,et al.  Traveling Salesman Problem , 2016 .

[24]  Cândida Ferreira,et al.  Gene Expression Programming: Mathematical Modeling by an Artificial Intelligence , 2014, Studies in Computational Intelligence.

[25]  Kevin Leyton-Brown,et al.  Tradeoffs in the empirical evaluation of competing algorithm designs , 2010, Annals of Mathematics and Artificial Intelligence.

[26]  Kay Chen Tan,et al.  A Multi-Facet Survey on Memetic Computation , 2011, IEEE Transactions on Evolutionary Computation.

[27]  Zbigniew Michalewicz,et al.  GAVaPS-a genetic algorithm with varying population size , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[28]  Sanja Petrovic,et al.  HyFlex: A Benchmark Framework for Cross-Domain Heuristic Search , 2011, EvoCOP.

[29]  Patrick De Causmaecker,et al.  An Intelligent Hyper-Heuristic Framework for CHeSC 2011 , 2012, LION.

[30]  Graham Kendall,et al.  Grammatical Evolution of Local Search Heuristics , 2012, IEEE Transactions on Evolutionary Computation.

[31]  Zbigniew Michalewicz,et al.  Parameter Setting in Evolutionary Algorithms , 2007, Studies in Computational Intelligence.

[32]  Yew-Soon Ong,et al.  A Conceptual Modeling of Meme Complexes in Stochastic Search , 2012, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[33]  George L. Nemhauser,et al.  The Traveling Salesman Problem: A Survey , 1968, Oper. Res..

[34]  David Meignan,et al.  An Evolutionary Programming Hyper-heuristic with Co-evolution for CHeSC’11 , 2011 .

[35]  Michèle Sebag,et al.  Analyzing bandit-based adaptive operator selection mechanisms , 2010, Annals of Mathematics and Artificial Intelligence.

[36]  Riccardo Poli,et al.  Generating SAT Local-Search Heuristics Using a GP Hyper-Heuristic Framework , 2007, Artificial Evolution.

[37]  Jorge Tavares,et al.  Towards the development of self-ant systems , 2011, GECCO '11.

[38]  Graham Kendall,et al.  A Tabu-Search Hyperheuristic for Timetabling and Rostering , 2003, J. Heuristics.

[39]  Jim E. Smith,et al.  Coevolving Memetic Algorithms: A Review and Progress Report , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[40]  María Cristina Riff,et al.  DVRP: a hard dynamic combinatorial optimisation problem tackled by an evolutionary hyper-heuristic , 2010, J. Heuristics.

[41]  Ender Özcan,et al.  A comprehensive analysis of hyper-heuristics , 2008, Intell. Data Anal..

[42]  Xianshun Chen,et al.  An Algorithm Development Environment for Problem-Solving , 2010, International Conference on Computational Problem-Solving.

[43]  Graham Kendall,et al.  A Classification of Hyper-heuristic Approaches , 2010 .

[44]  Raymond Chiong,et al.  Why Is Optimization Difficult? , 2009, Nature-Inspired Algorithms for Optimisation.

[45]  Fan Xue,et al.  Pearl Hunter: A Hyper-heuristic that Compiles Iterated Local Search Algorithms , 2011 .

[46]  Xianshun Chen,et al.  An algorithm development environment for problem-solving: software review , 2012, Memetic Comput..

[47]  El-Ghazali Talbi,et al.  Metaheuristics - From Design to Implementation , 2009 .

[48]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[49]  Cândida Ferreira,et al.  Gene Expression Programming: Mathematical Modeling by an Artificial Intelligence (Studies in Computational Intelligence) , 2006 .

[50]  Graham Kendall,et al.  A Genetic Programming Hyper-Heuristic Approach for Evolving 2-D Strip Packing Heuristics , 2010, IEEE Transactions on Evolutionary Computation.