Game-Engine-Assisted Research platform for Scientific computing (GEARS) in Virtual Reality

Abstract The Game-Engine-Assisted Research platform for Scientific computing (GEARS) is a visualization framework developed at the Materials Genome Innovation for Computational Software (MAGICS) center to perform simulations and on-the-fly data exploration in virtual reality (VR) environments. This hardware-agnostic framework accommodates multiple programming languages and game engines in addition to supporting integration with a widely-used materials simulation engine called LAMMPS. GEARS also features a novel data exploration tool called virtual confocal microscopy, which endows scientific visualization with enhanced functionality.

[1]  Mayur Gondhalekar,et al.  CAVE: An Emerging Immersive Technology -- A Review , 2014, 2014 UKSim-AMSS 16th International Conference on Computer Modelling and Simulation.

[2]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[3]  Hua Jiang,et al.  Aromatic Polyamide Reverse-Osmosis Membrane: An Atomistic Molecular Dynamics Simulation. , 2016, The journal of physical chemistry. B.

[4]  Christopher Rao,et al.  Graphs in Statistical Analysis , 2010 .

[5]  G. Ravichandran,et al.  Three-dimensional Full-field Measurements of Large Deformations in Soft Materials Using Confocal Microscopy and Digital Volume Correlation , 2007 .

[6]  R. Webb,et al.  In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast. , 1995, The Journal of investigative dermatology.

[7]  Priya Vashishta,et al.  Polytypism in ultrathin tellurium , 2018, 2D Materials.

[8]  James B. Pawley,et al.  Confocal and two‐photon microscopy: Foundations, applications and advances , 2002 .

[9]  Mel Slater,et al.  Taking steps: the influence of a walking technique on presence in virtual reality , 1995, TCHI.

[10]  R. Webb Confocal optical microscopy , 1996 .

[11]  P. Ajayan,et al.  Molecular Simulation of MoS2 Exfoliation , 2018, Scientific Reports.

[12]  Paolo Cignoni,et al.  Ambient Occlusion and Edge Cueing for Enhancing Real Time Molecular Visualization , 2006, IEEE Transactions on Visualization and Computer Graphics.

[13]  Mark Mon-Williams,et al.  Natural problems for stereoscopic depth perception in virtual environments , 1995, Vision Research.

[14]  A. Stukowski Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool , 2009 .

[15]  Patricia S. Denbrook,et al.  Virtual Locomotion: Walking in Place through Virtual Environments , 1999, Presence.

[16]  Rajiv K. Kalia,et al.  Chemical Vapor Deposition Synthesis of MoS2 Layers from the Direct Sulfidation of MoO3 Surfaces Using Reactive Molecular Dynamics Simulations , 2018 .

[17]  Rajiv K. Kalia,et al.  A derivation and scalable implementation of the synchronous parallel kinetic Monte Carlo method for simulating long-time dynamics , 2017, Comput. Phys. Commun..

[18]  Arthur Nishimoto,et al.  CAVE2: a hybrid reality environment for immersive simulation and information analysis , 2013, Electronic Imaging.

[19]  Berend Smit,et al.  Understanding Molecular Simulation , 2001 .

[20]  Hank Childs,et al.  VisIt: An End-User Tool for Visualizing and Analyzing Very Large Data , 2011 .

[21]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[22]  Heng Ma,et al.  iBET: Immersive visualization of biological electron-transfer dynamics. , 2016, Journal of molecular graphics & modelling.

[23]  Priya Vashishta,et al.  Computational Synthesis of MoS2 Layers by Reactive Molecular Dynamics Simulations: Initial Sulfidation of MoO3 Surfaces. , 2017, Nano letters.

[24]  P. Ajayan,et al.  Structural Phase Transformation in Strained Monolayer MoWSe2 Alloy. , 2018, ACS nano.