Site-directed mutagenesis of Mycobacterium tuberculosis and functional validation to investigate potential bedaquiline resistance-causing mutations

[1]  W. Sougakoff,et al.  atpE Mutation in Mycobacterium tuberculosis Not Always Predictive of Bedaquiline Treatment Failure , 2022, Emerging infectious diseases.

[2]  Z. Iqbal,et al.  Deciphering Bedaquiline and Clofazimine Resistance in Tuberculosis: An Evolutionary Medicine Approach , 2021, bioRxiv.

[3]  A. Van Rie,et al.  Genetic variants and their association with phenotypic resistance to bedaquiline in Mycobacterium tuberculosis: a systematic review and individual isolate data analysis , 2021, The Lancet. Microbe.

[4]  Douglas E. V. Pires,et al.  mmCSM-PPI: predicting the effects of multiple point mutations on protein–protein interactions , 2021, Nucleic Acids Res..

[5]  J. Rubinstein,et al.  Structure of mycobacterial ATP synthase bound to the tuberculosis drug bedaquiline , 2020, Nature.

[6]  M. Pasca,et al.  In vitro Study of Bedaquiline Resistance in Mycobacterium tuberculosis Multi-Drug Resistant Clinical Isolates , 2020, Frontiers in Microbiology.

[7]  Conrad C. Huang,et al.  UCSF ChimeraX: Structure visualization for researchers, educators, and developers , 2020, Protein science : a publication of the Protein Society.

[8]  Douglas E. V. Pires,et al.  DynaMut2: Assessing changes in stability and flexibility upon single and multiple point missense mutations , 2020, Protein science : a publication of the Protein Society.

[9]  Carlos H. M. Rodrigues,et al.  Empirical ways to identify novel Bedaquiline resistance mutations in AtpE , 2019, PloS one.

[10]  R. Peters,et al.  In Vitro Study of Stepwise Acquisition of rv0678 and atpE Mutations Conferring Bedaquiline Resistance , 2019, Antimicrobial Agents and Chemotherapy.

[11]  A. Bañuls,et al.  Molecular Diagnosis of Drug-Resistant Tuberculosis; A Literature Review , 2019, Front. Microbiol..

[12]  Simon C. Potter,et al.  The EMBL-EBI search and sequence analysis tools APIs in 2019 , 2019, Nucleic Acids Res..

[13]  R. Peters,et al.  Clofazimine Exposure In Vitro Selects Efflux Pump Mutants and Bedaquiline Resistance , 2019, Antimicrobial Agents and Chemotherapy.

[14]  V. Sintchenko,et al.  Mutations associated with in vitro resistance to bedaquiline in Mycobacterium tuberculosis isolates in Australia. , 2018, Tuberculosis.

[15]  O. Antonova,et al.  Examination of bedaquiline- and linezolid-resistant Mycobacterium tuberculosis isolates from the Moscow region , 2017, The Journal of antimicrobial chemotherapy.

[16]  T. Blundell,et al.  SDM: a server for predicting effects of mutations on protein stability , 2017, Nucleic Acids Res..

[17]  Xiaoyan Zhang,et al.  Comparison of antibody responses against Mycobacterium tuberculosis antigen Rv0679c in tuberculosis patients from the endemic and non-endemic regions of the Beijing genotype: a case control study , 2017, BMC Infectious Diseases.

[18]  L. Rupa,et al.  Molecular analysis of Rv0679c and Rv0180c genes of Mycobacterium tuberculosis from clinical isolates of pulmonary tuberculosis , 2016, Indian journal of medical microbiology.

[19]  N. Ismail,et al.  Evaluation of Semiautomated IS6110-Based Restriction Fragment Length Polymorphism Typing for Mycobacterium tuberculosis in a High-Burden Setting , 2016, Journal of Clinical Microbiology.

[20]  Itay Mayrose,et al.  ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules , 2016, Nucleic Acids Res..

[21]  G. Bloemberg,et al.  Acquired Resistance to Bedaquiline and Delamanid in Therapy for Tuberculosis. , 2015, The New England journal of medicine.

[22]  A. Pain,et al.  Whole genome sequencing reveals genomic heterogeneity and antibiotic purification in Mycobacterium tuberculosis isolates , 2015, BMC Genomics.

[23]  G. Bloemberg,et al.  A mutation associated with clofazimine and bedaquiline cross-resistance in MDR-TB following bedaquiline treatment , 2014, European Respiratory Journal.

[24]  E. Cox,et al.  FDA approval of bedaquiline--the benefit-risk balance for drug-resistant tuberculosis. , 2014, The New England journal of medicine.

[25]  B. D. de Jong,et al.  Acquired Resistance of Mycobacterium tuberculosis to Bedaquiline , 2014, PloS one.

[26]  Douglas E. V. Pires,et al.  DUET: a server for predicting effects of mutations on protein stability using an integrated computational approach , 2014, Nucleic Acids Res..

[27]  Nitin Kumar,et al.  Crystal Structure of the Transcriptional Regulator Rv0678 of Mycobacterium tuberculosis* , 2014, The Journal of Biological Chemistry.

[28]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[29]  S. Cole,et al.  Cross-Resistance between Clofazimine and Bedaquiline through Upregulation of MmpL5 in Mycobacterium tuberculosis , 2014, Antimicrobial Agents and Chemotherapy.

[30]  Douglas E. V. Pires,et al.  mCSM: predicting the effects of mutations in proteins using graph-based signatures , 2013, Bioinform..

[31]  T. Iwamoto,et al.  Simple Multiplex PCR Assay for Identification of Beijing Family Mycobacterium tuberculosis Isolates with a Lineage-Specific Mutation in Rv0679c , 2013, Journal of Clinical Microbiology.

[32]  M. Mohiyuddin,et al.  Fast and accurate read alignment for resequencing , 2012, Bioinform..

[33]  Matthew Berriman,et al.  Artemis: an integrated platform for visualization and analysis of high-throughput sequence-based experimental data , 2011, Bioinform..

[34]  M. DePristo,et al.  The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. , 2010, Genome research.

[35]  S. Fortune,et al.  Variation among Genome Sequences of H37Rv Strains of Mycobacterium tuberculosis from Multiple Laboratories , 2010, Journal of bacteriology.

[36]  David S. Goodsell,et al.  AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility , 2009, J. Comput. Chem..

[37]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[38]  G. Hatfull,et al.  Efficient point mutagenesis in mycobacteria using single‐stranded DNA recombineering: characterization of antimycobacterial drug targets , 2008, Molecular microbiology.

[39]  B. Rost,et al.  SNAP: predict effect of non-synonymous polymorphisms on function , 2007, Nucleic acids research.

[40]  P. V. van Helden,et al.  Safe Mycobacterium tuberculosis DNA Extraction Method That Does Not Compromise Integrity , 2006, Journal of Clinical Microbiology.

[41]  Arlin Stoltzfus,et al.  The Exchangeability of Amino Acids in Proteins , 2005, Genetics.

[42]  N. Costantino,et al.  Enhanced levels of λ Red-mediated recombinants in mismatch repair mutants , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[43]  T. Parish,et al.  Use of a flexible cassette method to generate a double unmarked Mycobacterium tuberculosis tlyA plcABC mutant by gene replacement. , 2000, Microbiology.

[44]  T. Blundell,et al.  Comparative protein modelling by satisfaction of spatial restraints. , 1993, Journal of molecular biology.

[45]  R. Grantham Amino Acid Difference Formula to Help Explain Protein Evolution , 1974, Science.

[46]  S. Kendall,et al.  Construction of targeted mycobacterial mutants by homologous recombination. , 2009, Methods in molecular biology.

[47]  A. Lucarelli,et al.  Azole resistance in Mycobacterium tuberculosis is mediated by the MmpS5-MmpL5 efflux system. , 2009, Tuberculosis.

[48]  N. Woodford,et al.  The emergence of antibiotic resistance by mutation. , 2007, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[49]  Claude-Alain H. Roten,et al.  Theoretical and practical advances in genome halving , 2004 .

[50]  N. Costantino,et al.  Enhanced levels of lambda Red-mediated recombinants in mismatch repair mutants. , 2003, Proceedings of the National Academy of Sciences of the United States of America.