Electricity from methane by reversing methanogenesis

[1]  Michael J. McAnulty,et al.  Metabolic engineering of Methanosarcina acetivorans for lactate production from methane , 2017, Biotechnology and bioengineering.

[2]  Yang Mu,et al.  Decoupling of DAMO archaea from DAMO bacteria in a methane-driven microbial fuel cell. , 2017, Water research.

[3]  V. Balaji Implications for Policy , 2017 .

[4]  J. Keltjens,et al.  Archaea catalyze iron-dependent anaerobic oxidation of methane , 2016, Proceedings of the National Academy of Sciences.

[5]  S. Wuertz,et al.  Next‐generation studies of microbial biofilm communities , 2016, Microbial biotechnology.

[6]  Hang Yu,et al.  Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction , 2016, Science.

[7]  Howard M. Salis,et al.  Reversing methanogenesis to capture methane for liquid biofuel precursors , 2016, Microbial Cell Factories.

[8]  M. Diender,et al.  Anaerobic oxidation of methane associated with sulfate reduction in a natural freshwater gas source , 2015, The ISME Journal.

[9]  Yinguang Chen,et al.  Alteration of intracellular protein expressions as a key mechanism of the deterioration of bacterial denitrification caused by copper oxide nanoparticles , 2015, Scientific Reports.

[10]  G. Chadwick,et al.  Single cell activity reveals direct electron transfer in methanotrophic consortia , 2015, Nature.

[11]  Robert W. Howarth,et al.  Methane emissions and climatic warming risk from hydraulic fracturing and shale gas development: implications for policy , 2015 .

[12]  Xueliang Sun,et al.  Paracoccus angustae sp. nov., isolated from soil. , 2015, International journal of systematic and evolutionary microbiology.

[13]  S. Lee,et al.  Systems strategies for developing industrial microbial strains , 2015, Nature Biotechnology.

[14]  D. Lovley,et al.  Link between capacity for current production and syntrophic growth in Geobacter species , 2015, Front. Microbiol..

[15]  Y. Kim,et al.  Paracoccus panacisoli sp. nov., isolated from a forest soil cultivated with Vietnamese ginseng. , 2015, International journal of systematic and evolutionary microbiology.

[16]  R. Moreno-Sánchez,et al.  Air-Adapted Methanosarcina acetivorans Shows High Methane Production and Develops Resistance against Oxygen Stress , 2015, PloS one.

[17]  Kelly P. Nevin,et al.  Syntrophic growth via quinone-mediated interspecies electron transfer , 2015, Front. Microbiol..

[18]  B. Logan,et al.  COD removal characteristics in air-cathode microbial fuel cells. , 2015, Bioresource technology.

[19]  Shunsuke Takahashi,et al.  Development of a Prokaryotic Universal Primer for Simultaneous Analysis of Bacteria and Archaea Using Next-Generation Sequencing , 2014, PloS one.

[20]  Kenneth H. Nealson,et al.  Cell-secreted Flavins Bound to Membrane Cytochromes Dictate Electron Transfer Reactions to Surfaces with Diverse Charge and pH , 2014, Scientific Reports.

[21]  Ramon Gonzalez,et al.  Rethinking biological activation of methane and conversion to liquid fuels. , 2014, Nature chemical biology.

[22]  B. Logan,et al.  Evaluation of multi-brush anode systems in microbial fuel cells. , 2013, Bioresource Technology.

[23]  Shihu Hu,et al.  Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage , 2013, Nature.

[24]  Jeffrey A. Gralnick,et al.  Flavin Electron Shuttles Dominate Extracellular Electron Transfer by Shewanella oneidensis , 2013, mBio.

[25]  S. Masih,et al.  Microbial fuel cells demonstrate high coulombic efficiency applicable for water remediation. , 2012, Indian journal of experimental biology.

[26]  Martin Krueger,et al.  Structure of a methyl-coenzyme M reductase from Black Sea mats that oxidize methane anaerobically , 2011, Nature.

[27]  J. Gescher,et al.  Dissimilatory Reduction of Extracellular Electron Acceptors in Anaerobic Respiration , 2011, Applied and Environmental Microbiology.

[28]  G. Najafpour,et al.  Methylene blue as electron promoters in microbial fuel cell , 2011 .

[29]  A. Ingraffea,et al.  Methane and the greenhouse-gas footprint of natural gas from shale formations , 2011 .

[30]  Shukun Tang,et al.  Paracoccus niistensis sp. nov., isolated from forest soil, India , 2011, Antonie van Leeuwenhoek.

[31]  Surajit Das,et al.  Recent developments in microbial fuel cells: a review , 2010 .

[32]  B. Logan,et al.  Anodic biofilms in microbial fuel cells harbor low numbers of higher-power-producing bacteria than abundant genera , 2010, Applied Microbiology and Biotechnology.

[33]  Bruce E. Logan,et al.  Treatment of carbon fiber brush anodes for improving power generation in air-cathode microbial fuel cells , 2010 .

[34]  D. Pant,et al.  A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. , 2010, Bioresource technology.

[35]  D. Lovley,et al.  Role of Geobacter sulfurreducens Outer Surface c-Type Cytochromes in Reduction of Soil Humic Acid and Anthraquinone-2,6-Disulfonate , 2010, Applied and Environmental Microbiology.

[36]  J. Lloyd,et al.  The effect of flavin electron shuttles in microbial fuel cells current production , 2010, Applied Microbiology and Biotechnology.

[37]  Nadine Unger,et al.  Improved Attribution of Climate Forcing to Emissions , 2009, Science.

[38]  K. Knittel,et al.  Anaerobic oxidation of methane: progress with an unknown process. , 2009, Annual review of microbiology.

[39]  Vincent M Rotello,et al.  Electricity generation by Geobacter sulfurreducens attached to gold electrodes. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[40]  Kaichang Li,et al.  Electricity production from twelve monosaccharides using microbial fuel cells , 2008 .

[41]  B. Logan,et al.  Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. , 2007, Environmental science & technology.

[42]  W. Reeburgh Oceanic methane biogeochemistry. , 2007, Chemical reviews.

[43]  Derek R. Lovley,et al.  Biofilm and Nanowire Production Leads to Increased Current in Geobacter sulfurreducens Fuel Cells , 2006, Applied and Environmental Microbiology.

[44]  Bruce E Logan,et al.  Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies. , 2005, Water research.

[45]  Byung Hong Kim,et al.  Construction and operation of a novel mediator- and membrane-less microbial fuel cell , 2004 .

[46]  David L. Valentine,et al.  Biogeochemistry and microbial ecology of methane oxidation in anoxic environments: a review , 2002, Antonie van Leeuwenhoek.

[47]  K. Straub,et al.  Evaluation of electron-shuttling compounds in microbial ferric iron reduction. , 2003, FEMS microbiology letters.

[48]  D. R. Bond,et al.  Electricity Production by Geobacter sulfurreducens Attached to Electrodes , 2003, Applied and Environmental Microbiology.

[49]  D. Park,et al.  Electricity Generation in Microbial Fuel Cells Using Neutral Red as an Electronophore , 2000, Applied and Environmental Microbiology.

[50]  D. Lovley,et al.  Role of Humic-Bound Iron as an Electron Transfer Agent in Dissimilatory Fe(III) Reduction , 1999, Applied and Environmental Microbiology.

[51]  D. Lovley,et al.  Quinone Moieties Act as Electron Acceptors in the Reduction of Humic Substances by Humics-Reducing Microorganisms , 1998 .

[52]  K. Sowers,et al.  A genetic system for Archaea of the genus Methanosarcina: liposome-mediated transformation and construction of shuttle vectors. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[53]  W. Metcalf,et al.  Molecular, genetic, and biochemical characterization of the serC gene of Methanosarcina barkeri Fusaro , 1996, Journal of bacteriology.

[54]  D. Lovley,et al.  Humic substances as electron acceptors for microbial respiration , 1996, Nature.

[55]  D. Lovley,et al.  Geobacter sulfurreducens sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal-reducing microorganism , 1994, Applied and environmental microbiology.

[56]  L. Reimer,et al.  Scanning Electron Microscopy , 1984 .

[57]  Robert C. Wolpert,et al.  A Review of the , 1985 .

[58]  S. F. Baron,et al.  Methanosarcina acetivorans sp. nov., an Acetotrophic Methane-Producing Bacterium Isolated from Marine Sediments , 1984, Applied and environmental microbiology.

[59]  P. Echlin,et al.  Scanning Electron Microscopy , 2014 .

[60]  R. Berk,et al.  BIOELECTROCHEMICAL ENERGY CONVERSION. , 1964, Applied microbiology.

[61]  J. Davis,et al.  Preliminary Experiments on a Microbial Fuel Cell , 1962, Science.

[62]  E. E. L O G A N,et al.  Cathode Performance as a Factor in Electricity Generation in Microbial Fuel Cells , 2022 .