A stabilised finite element method for the convection–diffusion–reaction equation in mixed form

Abstract This paper is devoted to the approximation of the convection–diffusion–reaction equation using a mixed, first-order, formulation. We propose, and analyse, a stabilised finite element method that allows equal order interpolations for the primal and dual variables. This formulation, reminiscent of the Galerkin least-squares method, is proven stable and convergent. In addition, a numerical assessment of the numerical performance of different stabilised finite element methods for the mixed formulation is carried out, and the different methods are compared in terms of accuracy, stability, and sharpness of the layers for two different classical test problems.

[1]  P. Raviart,et al.  A mixed finite element method for 2-nd order elliptic problems , 1977 .

[2]  Po-Wen Hsieh,et al.  A Novel Least-Squares Finite Element Method Enriched with Residual-Free Bubbles for Solving Convection-Dominated Problems , 2010, SIAM J. Sci. Comput..

[3]  Thomas A. Manteuffel,et al.  First-Order System Least Squares (FOSLS) for Convection-Diffusion Problems: Numerical Results , 1998, SIAM J. Sci. Comput..

[4]  A. Masud,et al.  A stabilized mixed finite element method for the first‐order form of advection–diffusion equation , 2008 .

[5]  Po-Wen Hsieh,et al.  On efficient least-squares finite element methods for convection-dominated problems , 2009 .

[6]  J. M. Cascón,et al.  Augmented mixed finite element method for the Oseen problem: A priori and a posteriori error analyses , 2017 .

[7]  Weifeng Qiu,et al.  First order least squares method with weakly imposed boundary condition for convection dominated diffusion problems , 2013, Comput. Math. Appl..

[8]  P. Hansbo,et al.  Edge stabilization for Galerkin approximations of convection?diffusion?reaction problems , 2004 .

[9]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[10]  Pavel B. Bochev,et al.  Least-Squares Finite Element Methods , 2009, Applied mathematical sciences.

[11]  Volker John,et al.  On spurious oscillations at layers diminishing (SOLD) methods for convection–diffusion equations: Part I – A review , 2007 .

[12]  Petr Knobloch A Generalization of the Local Projection Stabilization for Convection-Diffusion-Reaction Equations , 2010, SIAM J. Numer. Anal..

[13]  Jeam-Marie Thomas,et al.  Mixed Finite Elements Methods for Convection-Diffusion Problems , 1987 .

[14]  Rob Stevenson,et al.  A robust Petrov-Galerkin discretisation of convection-diffusion equations , 2014, Comput. Math. Appl..

[15]  Stefano Micheletti,et al.  Stability and error analysis of mixed finite-volume methods for advection dominated problems , 2006, Comput. Math. Appl..

[16]  Gabriel R. Barrenechea,et al.  Edge-based nonlinear diffusion for finite element approximations of convection–diffusion equations and its relation to algebraic flux-correction schemes , 2015, Numerische Mathematik.

[17]  T. Manteuffel,et al.  FIRST-ORDER SYSTEM LEAST SQUARES FOR SECOND-ORDER PARTIAL DIFFERENTIAL EQUATIONS : PART II , 1994 .

[18]  Thomas J. R. Hughes,et al.  A stabilized mixed finite element method for Darcy flow , 2002 .

[19]  Jean E. Roberts,et al.  Global estimates for mixed methods for second order elliptic equations , 1985 .

[20]  T. Hughes,et al.  Stabilized finite element methods. I: Application to the advective-diffusive model , 1992 .

[21]  Santiago Badia,et al.  On Monotonicity-Preserving Stabilized Finite Element Approximations of Transport Problems , 2014, SIAM J. Sci. Comput..

[22]  Gabriel R. Barrenechea,et al.  An algebraic flux correction scheme satisfying the discrete maximum principle and linearity preservation on general meshes , 2017 .

[23]  Bernardo Cockburn,et al.  An implicit high-order hybridizable discontinuous Galerkin method for nonlinear convection-diffusion equations , 2009, J. Comput. Phys..

[24]  Volker John,et al.  An assessment of discretizations for convection-dominated convection–diffusion equations , 2011 .

[25]  L. Franca,et al.  Stabilized Finite Element Methods , 1993 .

[26]  Carsten Carstensen,et al.  Error analysis of nonconforming and mixed FEMs for second-order linear non-selfadjoint and indefinite elliptic problems , 2014, Numerische Mathematik.

[27]  Bernardo Cockburn,et al.  An implicit high-order hybridizable discontinuous Galerkin method for linear convection-diffusion equations , 2009, Journal of Computational Physics.

[28]  Rob Stevenson,et al.  A Petrov-Galerkin discretization with optimal test space of a mild-weak formulation of convection-diffusion equations in mixed form , 2015 .

[29]  A posteriori error analysis of a stabilized mixed FEM for convection-diffusion problems , 2015 .

[30]  Frédéric Hecht,et al.  New development in freefem++ , 2012, J. Num. Math..

[31]  CaiZhiqiang,et al.  First-Order System Least Squares for Second-Order Partial Differential Equations , 1997 .

[32]  Hans-Görg Roos,et al.  Robust Numerical Methods for Singularly Perturbed Differential Equations: A Survey Covering 2008–2012 , 2012 .

[33]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[34]  Volker John,et al.  On spurious oscillations at layers diminishing (SOLD) methods for convection–diffusion equations: Part II – Analysis for P1 and Q1 finite elements , 2008 .

[35]  Yong Yang,et al.  A Second-Order Maximum Principle Preserving Lagrange Finite Element Technique for Nonlinear Scalar Conservation Equations , 2014, SIAM J. Numer. Anal..

[36]  M. Stynes,et al.  Robust Numerical Methods for Singularly Perturbed Differential Equations: Convection-Diffusion-Reaction and Flow Problems , 1996 .