Robin-Robin preconditioned Krylov methods for fluid-structure interaction problems

In this work, we propose a Robin-Robin preconditioner combined with Krylov iterations for the solution of the interface system arising in fluid-structure interaction (FSI) problems. It can be seen as a partitioned FSI procedure and in this respect it generalizes the ideas introduced in [S. Badia, F. Nobile, C. Vergara, J. Comput. Phys. 227 (2008) 7027-7051]. We analyze the convergence of GMRES iterations with the Robin-Robin preconditioner on a model problem and compare its efficiency with some existing algorithms. The method is shown to be very efficient for many challenging fluid-structure interaction problems, such as those characterized by a large added-mass effect or by enclosed fluids. In particular, the possibility to solve balloon-type problems without any special treatment makes this algorithm very appealing compared to the computationally intensive existing approaches. (C) 2009 Elsevier B.V. All rights reserved.

[1]  V. Brummelen Added Mass Effects of Compressible and Incompressible Flows in Fluid-Structure Interaction , 2009 .

[2]  Miguel Angel Fernández,et al.  A Newton method using exact jacobians for solving fluid-structure coupling , 2005 .

[3]  P. Tallec,et al.  Fluid structure interaction with large structural displacements , 2001 .

[4]  A. Quarteroni,et al.  Fluid–structure algorithms based on Steklov–Poincaré operators , 2006 .

[5]  Charbel Farhat,et al.  Partitioned procedures for the transient solution of coupled aeroelastic problems , 2001 .

[6]  A. Quarteroni,et al.  A SEMI-IMPLICIT APPROACH FOR FLUID-STRUCTURE INTERACTION BASED ON AN ALGEBRAIC FRACTIONAL STEP METHOD , 2007 .

[7]  Alfio Quarteroni,et al.  Computational vascular fluid dynamics: problems, models and methods , 2000 .

[8]  Erik Burman,et al.  Stabilized explicit coupling for fluid-structure interaction using Nitsche s method , 2007 .

[9]  Annalisa Quaini,et al.  Coupling Biot and Navier-Stokes equations for modelling fluid-poroelastic media interaction , 2009, J. Comput. Phys..

[10]  van Eh Harald Brummelen,et al.  Error-amplification analysis of subiteration-preconditioned GMRES for fluid-structure interaction , 2006 .

[11]  Barry Smith,et al.  Domain Decomposition Methods for Partial Differential Equations , 1997 .

[12]  van Eh Harald Brummelen,et al.  An interface Newton–Krylov solver for fluid–structure interaction , 2005 .

[13]  Alfio Quarteroni,et al.  Analysis of the Yosida Method for the Incompressible Navier-Stokes Equations , 1999 .

[14]  Miguel A. Fernández,et al.  A projection semi‐implicit scheme for the coupling of an elastic structure with an incompressible fluid , 2007 .

[15]  F. NOBILE,et al.  An Effective Fluid-Structure Interaction Formulation for Vascular Dynamics by Generalized Robin Conditions , 2008, SIAM J. Sci. Comput..

[16]  Alberto Valli,et al.  Coercive domain decomposition algorithms for advection-diffusion equations and systems , 1998 .

[17]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[18]  Fabio Nobile,et al.  Fluid-structure partitioned procedures based on Robin transmission conditions , 2008, J. Comput. Phys..

[19]  T. Tezduyar,et al.  Arterial fluid mechanics modeling with the stabilized space–time fluid–structure interaction technique , 2008 .

[20]  T. Hughes,et al.  Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .

[21]  Annalisa Quaini,et al.  Splitting Methods Based on Algebraic Factorization for Fluid-Structure Interaction , 2008, SIAM J. Sci. Comput..

[22]  Mikko Lyly,et al.  FLUID-STRUCTURE INTERACTION BOUNDARY CONDITIONS BY ARTIFICIAL COMPRESSIBILITY , 2001 .

[23]  J. Halleux,et al.  An arbitrary lagrangian-eulerian finite element method for transient dynamic fluid-structure interactions , 1982 .

[24]  Fabio Nobile,et al.  Numerical approximation of fluid-structure interaction problems with application to haemodynamics , 2001 .

[25]  Tayfun E. Tezduyar,et al.  Modelling of fluid–structure interactions with the space–time finite elements: Arterial fluid mechanics , 2007 .

[26]  W. Wall,et al.  A Solution for the Incompressibility Dilemma in Partitioned Fluid–Structure Interaction with Pure Dirichlet Fluid Domains , 2006 .

[27]  Luca Gerardo-Giorda,et al.  A Robin?Robin preconditioner for advection?diffusion equations with discontinuous coefficients , 2004 .

[28]  Howard C. Elman,et al.  Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics , 2014 .

[29]  Wing Kam Liu,et al.  Lagrangian-Eulerian finite element formulation for incompressible viscous flows☆ , 1981 .

[30]  Céline Grandmont Analyse mathématique et numérique de quelques problèmes d'intéraction fluide-structure , 1998 .

[31]  Alfio Quarteroni,et al.  Robin-Robin Domain Decomposition Methods for the Stokes-Darcy Coupling , 2007, SIAM J. Numer. Anal..

[32]  Charles A. Taylor,et al.  A coupled momentum method for modeling blood flow in three-dimensional deformable arteries , 2006 .

[33]  M. Heil An efficient solver for the fully-coupled solution of large-displacement fluid-structure interaction problems , 2004 .

[34]  C. Vergara,et al.  Flow rate defective boundary conditions in haemodynamics simulations , 2005 .

[35]  A. Quarteroni,et al.  Factorization methods for the numerical approximation of Navier-Stokes equations , 2000 .

[36]  Alfio Quarteroni,et al.  Numerical Treatment of Defective Boundary Conditions for the Navier-Stokes Equations , 2002, SIAM J. Numer. Anal..

[37]  T. Hughes,et al.  Isogeometric Fluid–structure Interaction Analysis with Applications to Arterial Blood Flow , 2006 .

[38]  R. Codina A stabilized finite element method for generalized stationary incompressible flows , 2001 .

[39]  Fabio Nobile,et al.  Added-mass effect in the design of partitioned algorithms for fluid-structure problems , 2005 .

[40]  L. Formaggia,et al.  Numerical solution of flow rate boundary problems for an incompressible fluid in deformable domains , 2009 .

[41]  Annalisa Quaini,et al.  Modular vs. non-modular preconditioners for fluid-structure systems with large added-mass effect , 2008 .

[42]  E. Ramm,et al.  Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows , 2007 .

[43]  FernándezMiguel Ángel,et al.  A Newton method using exact jacobians for solving fluid-structure coupling , 2005 .

[44]  J. B. Perot,et al.  An analysis of the fractional step method , 1993 .

[45]  Jean-Frédéric Gerbeau,et al.  A Quasi-Newton Algorithm Based on a Reduced Model for Fluid-Structure Interaction Problems in Blood Flows , 2003 .