Computational prediction of microRNA genes.

The computational identification of novel microRNA (miRNA) genes is a challenging task in bioinformatics. Massive amounts of data describing unknown functional RNA transcripts have to be analyzed for putative miRNA candidates with automated computational pipelines. Beyond those miRNAs that meet the classical definition, high-throughput sequencing techniques have revealed additional miRNA-like molecules that are derived by alternative biogenesis pathways. Exhaustive bioinformatics analyses on such data involve statistical issues as well as precise sequence and structure inspection not only of the functional mature part but also of the whole precursor sequence of the putative miRNA. Apart from a considerable amount of species-specific miRNAs, the majority of all those genes are conserved at least among closely related organisms. Some miRNAs, however, can be traced back to very early points in the evolution of eukaryotic species. Thus, the investigation of the conservation of newly found miRNA candidates comprises an important step in the computational annotation of miRNAs.Topics covered in this chapter include a review on the obvious problem of miRNA annotation and family definition, recommended pipelines of computational miRNA annotation or detection, and an overview of current computer tools for the prediction of miRNAs and their limitations. The chapter closes discussing how those bioinformatic approaches address the problem of faithful miRNA prediction and correct annotation.

[1]  Michelle S. Scott,et al.  Identification of human miRNA precursors that resemble box C/D snoRNAs , 2011, Nucleic acids research.

[2]  Peter F. Stadler,et al.  Fast Mapping of Short Sequences with Mismatches, Insertions and Deletions Using Index Structures , 2009, PLoS Comput. Biol..

[3]  Lydia Gramzow,et al.  SplamiR - prediction of spliced miRNAs in plants , 2011, Bioinform..

[4]  B. Cullen,et al.  Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. , 2004, RNA.

[5]  M. Ivan,et al.  microRNA: emerging therapeutic targets in acute ischemic diseases. , 2010, Pharmacology & therapeutics.

[6]  Ana M. Aransay,et al.  miRanalyzer: a microRNA detection and analysis tool for next-generation sequencing experiments , 2009, Nucleic Acids Res..

[7]  Bo Wei,et al.  MiRPara: a SVM-based software tool for prediction of most probable microRNA coding regions in genome scale sequences , 2011, BMC Bioinformatics.

[8]  Raymond K. Auerbach,et al.  Prediction and characterization of noncoding RNAs in C. elegans by integrating conservation, secondary structure, and high-throughput sequencing and array data. , 2011, Genome research.

[9]  Anders Krogh,et al.  Intragenomic Matching Reveals a Huge Potential for miRNA-Mediated Regulation in Plants , 2007, PLoS Comput. Biol..

[10]  D. Bartel,et al.  Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. , 2004, Molecular cell.

[11]  F. Slack,et al.  The let-7 family of microRNAs. , 2008, Trends in cell biology.

[12]  A. Hatzigeorgiou,et al.  The DIANA-mirExTra Web Server: From Gene Expression Data to MicroRNA Function , 2010, PloS one.

[13]  Kristin C. Gunsalus,et al.  microRNA Target Predictions across Seven Drosophila Species and Comparison to Mammalian Targets , 2005, PLoS Comput. Biol..

[14]  David W. Taylor,et al.  A Novel miRNA Processing Pathway Independent of Dicer Requires Argonaute2 Catalytic Activity , 2010, Science.

[15]  Tomohiro Miyoshi,et al.  Many ways to generate microRNA-like small RNAs: non-canonical pathways for microRNA production , 2010, Molecular Genetics and Genomics.

[16]  Sean R. Eddy,et al.  Infernal 1.0: inference of RNA alignments , 2009, Bioinform..

[17]  Robert Giegerich,et al.  Abstract shapes of RNA. , 2004, Nucleic acids research.

[18]  Bin Liu,et al.  Genome-wide analysis for discovery of rice microRNAs reveals natural antisense microRNAs (nat-miRNAs) , 2008, Proceedings of the National Academy of Sciences.

[19]  Olivier Voinnet,et al.  Revisiting the principles of microRNA target recognition and mode of action , 2009, Nature Reviews Molecular Cell Biology.

[20]  Sean R. Eddy,et al.  Rfam: an RNA family database , 2003, Nucleic Acids Res..

[21]  Duangdao Wichadakul,et al.  MicroPC (μPC): A comprehensive resource for predicting and comparing plant microRNAs , 2009, BMC Genomics.

[22]  Byoung-Tak Zhang,et al.  Human microRNA prediction through a probabilistic co-learning model of sequence and structure , 2005, Nucleic acids research.

[23]  M. Levine,et al.  miRTRAP, a computational method for the systematic identification of miRNAs from high throughput sequencing data , 2010, Genome Biology.

[24]  R. Berro,et al.  HIV-1 TAR element is processed by Dicer to yield a viral micro-RNA involved in chromatin remodeling of the viral LTR , 2007, BMC Molecular Biology.

[25]  B. Cullen,et al.  Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. , 2003, Genes & development.

[26]  Hui Zhou,et al.  deepBase: a database for deeply annotating and mining deep sequencing data , 2009, Nucleic Acids Res..

[27]  J. Mattick,et al.  Small RNAs derived from snoRNAs. , 2009, RNA.

[28]  T. Tuschl,et al.  Identification of Novel Genes Coding for Small Expressed RNAs , 2001, Science.

[29]  G. Hannon,et al.  A complex system of small RNAs in the unicellular green alga Chlamydomonas reinhardtii. , 2007, Genes & development.

[30]  E. Lai,et al.  The Mirtron Pathway Generates microRNA-Class Regulatory RNAs in Drosophila , 2007, Cell.

[31]  V. Praz,et al.  Defining the RNA polymerase III transcriptome: Genome-wide localization of the RNA polymerase III transcription machinery in human cells. , 2010, Genome research.

[32]  B. Cullen,et al.  Sequence requirements for micro RNA processing and function in human cells. , 2003, RNA.

[33]  Baohong Zhang,et al.  Plant microRNA: a small regulatory molecule with big impact. , 2006, Developmental biology.

[34]  Mihaela Zavolan,et al.  Identification of Clustered Micrornas Using an Ab Initio Prediction Method , 2022 .

[35]  B. Cullen Derivation and function of small interfering RNAs and microRNAs. , 2004, Virus research.

[36]  C. Burge,et al.  The microRNAs of Caenorhabditis elegans. , 2003, Genes & development.

[37]  Peter F Stadler,et al.  Fast and reliable prediction of noncoding RNAs , 2005, Proc. Natl. Acad. Sci. USA.

[38]  David Osumi-Sutherland,et al.  FlyBase: enhancing Drosophila Gene Ontology annotations , 2008, Nucleic Acids Res..

[39]  Christoph Flamm,et al.  The expansion of the metazoan microRNA repertoire , 2006, BMC Genomics.

[40]  Gerhard Steger,et al.  NOVOMIR: De Novo Prediction of MicroRNA-Coding Regions in a Single Plant-Genome , 2010, Journal of nucleic acids.

[41]  L. Mao,et al.  Evolution of plant microRNA gene families , 2007, Cell Research.

[42]  Weixiong Zhang,et al.  Multiple distinct small RNAs originate from the same microRNA precursors , 2010, Genome Biology.

[43]  G. Ruvkun,et al.  A uniform system for microRNA annotation. , 2003, RNA.

[44]  I. K. Jordan,et al.  Origin and Evolution of Human microRNAs From Transposable Elements , 2007, Genetics.

[45]  L. Lim,et al.  An Abundant Class of Tiny RNAs with Probable Regulatory Roles in Caenorhabditis elegans , 2001, Science.

[46]  James R. Knight,et al.  Genome sequencing in microfabricated high-density picolitre reactors , 2005, Nature.

[47]  Eric J Wagner,et al.  Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. , 2002, Molecular cell.

[48]  Geoffrey J. Barton,et al.  Human miRNA Precursors with Box H/ACA snoRNA Features , 2009, PLoS Comput. Biol..

[49]  Eugene Berezikov,et al.  Mammalian mirtron genes. , 2007, Molecular cell.

[50]  D. Haussecker,et al.  Human tRNA-derived small RNAs in the global regulation of RNA silencing. , 2010, RNA.

[51]  Ashesh A. Saraiya,et al.  snoRNA, a Novel Precursor of microRNA in Giardia lamblia , 2008, PLoS pathogens.

[52]  S. Salzberg,et al.  GeneSplicer: a new computational method for splice site prediction. , 2001, Nucleic acids research.

[53]  A. Sandelin,et al.  Hidden layers of human small RNAs , 2008, BMC Genomics.

[54]  Gi-Ho Sung,et al.  Evolution of microRNA genes by inverted duplication of target gene sequences in Arabidopsis thaliana , 2004, Nature Genetics.

[55]  Paul W. Sternberg,et al.  WormBase: network access to the genome and biology of Caenorhabditis elegans , 2001, Nucleic Acids Res..

[56]  Peter F. Stadler,et al.  Hairpins in a Haystack: recognizing microRNA precursors in comparative genomics data , 2006, ISMB.

[57]  Benjamin M. Wheeler,et al.  The deep evolution of metazoan microRNAs , 2009, Evolution & development.

[58]  Sam Griffiths-Jones,et al.  MicroRNA evolution by arm switching , 2011, EMBO reports.

[59]  M. Jones-Rhoades Prediction of plant miRNA genes. , 2010, Methods in molecular biology.

[60]  Fei Li,et al.  Classification of real and pseudo microRNA precursors using local structure-sequence features and support vector machine , 2005, BMC Bioinformatics.

[61]  Sanghyuk Lee,et al.  MicroRNA genes are transcribed by RNA polymerase II , 2004, The EMBO journal.

[62]  Rui Shi,et al.  Computational prediction of plant miRNA targets. , 2011, Methods in molecular biology.

[63]  A. Adai,et al.  Computational prediction of miRNAs in Arabidopsis thaliana. , 2005, Genome research.

[64]  Shuigeng Zhou,et al.  MiRenSVM: towards better prediction of microRNA precursors using an ensemble SVM classifier with multi-loop features , 2010, BMC Bioinformatics.

[65]  N. Rajewsky,et al.  Discovering microRNAs from deep sequencing data using miRDeep , 2008, Nature Biotechnology.

[66]  D. Bartel,et al.  MicroRNAS and their regulatory roles in plants. , 2006, Annual review of plant biology.

[67]  Nancy F. Hansen,et al.  Accurate Whole Human Genome Sequencing using Reversible Terminator Chemistry , 2008, Nature.

[68]  G. Barton,et al.  Filtering of deep sequencing data reveals the existence of abundant Dicer-dependent small RNAs derived from tRNAs. , 2009, RNA.

[69]  Ben Berkhout,et al.  A miRNA-tRNA mix-up: tRNA origin of proposed miRNA , 2010 .

[70]  Gang Xu,et al.  mirTools: microRNA profiling and discovery based on high-throughput sequencing , 2010, Nucleic Acids Res..

[71]  R. Bruskiewich,et al.  Characterization of statistical features for plant microRNA prediction , 2011, BMC Genomics.

[72]  Siu-Ming Yiu,et al.  SOAP2: an improved ultrafast tool for short read alignment , 2009, Bioinform..

[73]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[74]  P. Poirazi,et al.  Prediction of novel microRNA genes in cancer-associated genomic regions—a combined computational and experimental approach , 2009, Nucleic acids research.

[75]  Sam Griffiths-Jones,et al.  The microRNA Registry , 2004, Nucleic Acids Res..

[76]  Jiayu Wen,et al.  Computational Prediction of Candidate miRNAs and their Targets from Medicago truncatula Non-Protein-Coding Transcripts , 2008, Silico Biol..

[77]  P. Poirazi,et al.  MatureBayes: A Probabilistic Algorithm for Identifying the Mature miRNA within Novel Precursors , 2010, PloS one.

[78]  F. Slack,et al.  MicroRNAs as potential cancer therapeutics , 2008, Oncogene.

[79]  Z. Lun,et al.  Discoveries and functions of virus-encoded MicroRNAs , 2008 .

[80]  Yuasa Takashi,et al.  The interaction between DCL1 and HYL1 is important for efficient and precise processing of pri-miRNA in plant microRNA biogenesis. , 2005, RNA.

[81]  R. Shiekhattar,et al.  The Microprocessor complex mediates the genesis of microRNAs , 2004, Nature.

[82]  J. Steitz,et al.  Primary microRNA transcript retention at sites of transcription leads to enhanced microRNA production , 2008, The Journal of cell biology.

[83]  G. Hutvagner,et al.  A microRNA in a Multiple-Turnover RNAi Enzyme Complex , 2002, Science.

[84]  Panayiotis V. Benos,et al.  HHMMiR: efficient de novo prediction of microRNAs using hierarchical hidden Markov models , 2009, BMC Bioinformatics.

[85]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[86]  David P. Bartel,et al.  Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals , 2008, Nature.

[87]  Johan T den Dunnen,et al.  New methods for next generation sequencing based microRNA expression profiling , 2010, BMC Genomics.

[88]  N. Rajewsky,et al.  A human snoRNA with microRNA-like functions. , 2008, Molecular cell.

[89]  Philip C. J. Donoghue,et al.  MicroRNAs and the advent of vertebrate morphological complexity , 2008, Proceedings of the National Academy of Sciences.

[90]  Jun Yu,et al.  PMirP: A pre-microRNA prediction method based on structure-sequence hybrid features , 2010, Artif. Intell. Medicine.

[91]  Peter F. Stadler,et al.  Non-coding RNA annotation of the genome of Trichoplax adhaerens , 2009, Nucleic acids research.

[92]  Markus Brameier,et al.  Human box C/D snoRNAs with miRNA like functions: expanding the range of regulatory RNAs , 2010, Nucleic Acids Res..

[93]  M. McPeek,et al.  MicroRNAs and metazoan macroevolution: insights into canalization, complexity, and the Cambrian explosion , 2009, BioEssays : news and reviews in molecular, cellular and developmental biology.

[94]  M. Axtell,et al.  Evolution of plant microRNAs and their targets. , 2008, Trends in plant science.

[95]  Peter F. Stadler,et al.  Prediction of locally stable RNA secondary structures for genome-wide surveys , 2004, Bioinform..

[96]  Ana M. Aransay,et al.  miRanalyzer: an update on the detection and analysis of microRNAs in high-throughput sequencing experiments , 2011, Nucleic Acids Res..