A differential binary message-passing LDPC decoder

In this paper, we propose a binary message-passing algorithm for decoding low-density parity-check (LDPC) codes. The algorithm substantially improves the performance of purely hard-decision iterative algorithms with a small increase in the memory requirements and the computational complexity. We associate a reliability value to each nonzero element of the code's parity-check matrix, and differentially modify this value in each iteration based on the sum of the extrinsic binary messages from the check nodes. For the tested random and finite-geometry LDPC codes, the proposed algorithm can perform as close as about 1 dB and 0.5 dB to belief propagation (BP) at the error rates of interest, respectively. This is while, unlike BP, the algorithm does not require the estimation of channel signal to noise ratio. Low memory and computational requirements and binary message-passing make the proposed algorithm attractive for high-speed low-power applications.

[1]  Zhenyu Liu,et al.  A decoding algorithm for finite-geometry LDPC codes , 2005, IEEE Transactions on Communications.

[2]  Robert G. Gallager Low Density Parity Check Code , 1962 .

[3]  Ajay Dholakia,et al.  Reduced-complexity decoding of LDPC codes , 2005, IEEE Transactions on Communications.

[4]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[5]  Amir H. Banihashemi,et al.  On implementation of min-sum algorithm and its modifications for decoding low-density Parity-check (LDPC) codes , 2005, IEEE Transactions on Communications.

[6]  A. J. Blanksby,et al.  A 690-mW 1-Gb/s 1024-b, rate-1/2 low-density parity-check code decoder , 2001, IEEE J. Solid State Circuits.

[7]  A. Blanksby,et al.  A 690-mW 1-Gb/s 1024-b, rate-1/2 low-density parity-check code decoder , 2001, IEEE J. Solid State Circuits.

[8]  Rüdiger L. Urbanke,et al.  The capacity of low-density parity-check codes under message-passing decoding , 2001, IEEE Trans. Inf. Theory.

[9]  Amir H. Banihashemi,et al.  Bootstrap decoding of low-density parity-check codes , 2002, IEEE Communications Letters.

[10]  Hua Xiao,et al.  Successive relaxation for decoding of LDPC codes , 2008, 2008 24th Biennial Symposium on Communications.

[11]  Amir H. Banihashemi,et al.  Improving belief propagation on graphs with cycles , 2004, IEEE Communications Letters.

[12]  Amir H. Banihashemi,et al.  Threshold values and convergence properties of majority-based algorithms for decoding regular low-density parity-check codes , 2004, IEEE Transactions on Communications.

[13]  Ming Jiang,et al.  An improvement on the modified weighted bit flipping decoding algorithm for LDPC codes , 2005, IEEE Communications Letters.

[14]  Shu Lin,et al.  Low-density parity-check codes based on finite geometries: A rediscovery and new results , 2001, IEEE Trans. Inf. Theory.

[15]  Marc P. C. Fossorier,et al.  A modified weighted bit-flipping decoding of low-density Parity-check codes , 2004, IEEE Communications Letters.

[16]  Marc P. C. Fossorier,et al.  Iterative reliability-based decoding of low-density parity check codes , 2001, IEEE J. Sel. Areas Commun..

[17]  Robert Michael Tanner,et al.  A recursive approach to low complexity codes , 1981, IEEE Trans. Inf. Theory.

[18]  Nenad Miladinovic,et al.  Improved bit-flipping decoding of low-density parity-check codes , 2002, IEEE Transactions on Information Theory.

[19]  Amir H. Banihashemi,et al.  Dynamics and performance analysis of analog iterative decoding for low-density parity-check (LDPC) codes , 2006, IEEE Transactions on Communications.

[20]  William T. Freeman,et al.  Constructing free-energy approximations and generalized belief propagation algorithms , 2005, IEEE Transactions on Information Theory.

[21]  Hua Xiao,et al.  Graph-based message-passing schedules for decoding LDPC codes , 2004, IEEE Transactions on Communications.

[22]  L. Bazzi,et al.  Exact thresholds and optimal codes for the binary symmetric channel and Gallager's decoding algorithm A , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).