The Forced van der Pol Equation II: Canards in the Reduced System

This is the second in a series of papers about the dynamics of the forced van der Pol oscillator (J. Guckenheimer, K. Hoffman, and W. Weckesser, SIAM J. Appl. Dyn. Syst., 2(2 003), pp. 1-35). The first paper described the reduced system, a two dimensional flow with jumps that reflect fast trajectory segments in this vector field with two time scales. This paper extends the reduced system to account for canards, trajectory segments that follow the unstable portion of the slow manifold in the forced van der Pol oscillator. This extension of the reduced system serves as a template for approximating the full nonwandering set of the forced van der Pol oscillator for large sets of parameter values, including parameters for which the system is chaotic. We analyze some bifurcations in the extension of the reduced system, building upon our previous work in (J. Guckenheimer, K. Hoffman, and W. Weckesser, SIAM J. Appl. Dyn. Syst., 2(2 003), pp. 1-35). We conclude with computations of return maps and periodic orbits in the full three dimensional flow that are compared with the computations and analysis of the reduced system. These comparisons demonstrate numerically the validity of results we derive from the study of canards in the reduced system.

[1]  É. Benoît,et al.  Canards et enlacements , 1990 .

[2]  J. E. Littlewood On non-linear differential equations of the second order: IV. The general equation $$\ddot y + kf\left( y \right)\dot y + g\left( y \right) = bkp\left( \varphi \right)$$ , φ=t+α, φ=t+α , 1957 .

[3]  M. L. Cartwright On non-linear differential equations of the second order , 1949 .

[4]  J. E. Littlewood,et al.  Addendum to 'On Non-Linear Differential Equations of the Second Order, II' , 1949 .

[5]  J. Guckenheimer ONE‐DIMENSIONAL DYNAMICS * , 1980 .

[6]  J. E. Littlewood,et al.  On Non-Linear Differential Equations of the Second Order: II. The Equation .. y + kf(y, . y + g(y, k) = p(t) = p 1 (t) + kp 2 (t); k > 0, f(y) > 1 , 1947 .

[7]  J. Eckmann,et al.  Iterated maps on the interval as dynamical systems , 1980 .

[8]  John Guckenheimer,et al.  The Forced van der Pol Equation I: The Slow Flow and Its Bifurcations , 2003, SIAM J. Appl. Dyn. Syst..

[9]  B. V. D. Pol The Nonlinear Theory of Electric Oscillations , 1934 .

[10]  Lennart Carleson,et al.  The Dynamics of the Henon Map , 1991 .

[11]  John Guckenheimer,et al.  Computing Periodic Orbits and their Bifurcations with Automatic Differentiation , 2000, SIAM J. Sci. Comput..

[12]  M. Hénon A two-dimensional mapping with a strange attractor , 1976 .

[13]  P. Szmolyan,et al.  Canards in R3 , 2001 .

[14]  W. D. Melo,et al.  ONE-DIMENSIONAL DYNAMICS , 2013 .

[15]  L. Young,et al.  From Invariant Curves to Strange Attractors , 2002 .

[16]  Neil Fenichel Persistence and Smoothness of Invariant Manifolds for Flows , 1971 .

[17]  Thomas F. Fairgrieve,et al.  AUTO 2000 : CONTINUATION AND BIFURCATION SOFTWARE FOR ORDINARY DIFFERENTIAL EQUATIONS (with HomCont) , 1997 .

[18]  N. Levinson,et al.  Perturbations of discontinuous solutions of non-linear systems of differential equations , 1947, Proceedings of the National Academy of Sciences of the United States of America.

[19]  J. Guckenheimer Sensitive dependence to initial conditions for one dimensional maps , 1979 .

[20]  John E. Franke,et al.  Existence of periodic points for maps ofS1 , 1973 .

[21]  鈴木 雅之,et al.  On Iterated Maps of the Interval , 1981 .

[22]  J. Guckenheimer On the bifurcation of maps of the interval , 1977 .

[23]  John Guckenheimer,et al.  A Dynamical Simulation Facility for Hybrid Systems , 1993, Hybrid Systems.

[24]  A. Y. Kolesov,et al.  Asymptotic Methods in Singularly Perturbed Systems , 1994 .

[25]  John Guckenheimer,et al.  Bifurcation and degenerate decomposition in multiple time scale dynamical systems , 2002 .