Progressive network-flow based power-aware broadcast addressing for pin-constrained digital microfluidic biochips

In recent emerging marketplace, designs for pin-constrained digital microfluidic biochips (PDMFBs) have received much attention due to the large impact on packaging and product cost. One of the major approaches, broadcast addressing, reduces the pin count by assigning a single control pin to multiple electrodes with mutually-compatible control signals. Prior works utilize this addressing scheme by minimally grouping electrode sets with non-conflict signal merging. However, merging control signals also introduces redundant actuations, which potentially cause a high power-consumption problem. Recent studies on PDMFBs have indicated that high power consumption not only decreases the product lifetime but also degrades the system reliability. Unfortunately, this power-aware design concern is still not readily available among current design automations of PDMFBs. To cope with these issues, we propose in this paper the first power-aware broadcast addressing for PDMFBs. Our algorithm simultaneously takes pin-count reduction and power-consumption minimization into consideration, thereby achieving higher integration and better design performance. Experimental results demonstrate the effectiveness of our algorithm.

[1]  David S. Johnson,et al.  Approximation algorithms for combinatorial problems , 1973, STOC.

[2]  Fei Su,et al.  Droplet Routing in the Synthesis of Digital Microfluidic Biochips , 2006, Proceedings of the Design Automation & Test in Europe Conference.

[3]  Fei Su,et al.  Microfluidics-Based Biochips: Technology Issues, Implementation Platforms, and Design-Automation Challenges , 2006, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[4]  Krishnendu Chakrabarty,et al.  Broadcast electrode-addressing for pin-constrained multi-functional digital microfluidic biochips , 2008, 2008 45th ACM/IEEE Design Automation Conference.

[5]  K. Chakrabarty,et al.  Towards fault-tolerant digital microfluidic lab-on-chip: Defects, fault modeling, testing, and reconfiguration , 2008, 2008 IEEE Biomedical Circuits and Systems Conference.

[6]  Design and optimization of a digital microfluidic biochip for protein crystallization , 2008, 2008 IEEE/ACM International Conference on Computer-Aided Design.

[7]  Krishnendu Chakrabarty,et al.  A Droplet-Manipulation Method for Achieving High-Throughput in Cross-Referencing-Based Digital Microfluidic Biochips , 2008, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[8]  C. Kim,et al.  Direct-Referencing Two-Dimensional-Array Digital Microfluidics Using Multilayer Printed Circuit Board , 2008, Journal of Microelectromechanical Systems.

[9]  Yao-Wen Chang,et al.  ILP-based pin-count aware design methodology for microfluidic biochips , 2009, 2009 46th ACM/IEEE Design Automation Conference.

[10]  R. Fair,et al.  A scaling model for electrowetting-on-dielectric microfluidic actuators , 2009 .

[11]  Tsung-Wei Huang,et al.  A network-flow based pin-count aware routing algorithm for broadcast electrode-addressing EWOD chips , 2010, 2010 IEEE/ACM International Conference on Computer-Aided Design (ICCAD).

[12]  Krishnendu Chakrabarty,et al.  Digital microfluidic biochips: A vision for functional diversity and more than moore , 2010, 2010 IEEE/ACM International Conference on Computer-Aided Design (ICCAD).

[13]  Krishnendu Chakrabarty Design Automation and Test Solutions for Digital Microfluidic Biochips , 2010, IEEE Transactions on Circuits and Systems I: Regular Papers.