Criteria and new classes of k-positive maps

We study k-positive maps on operators. Proofs are given to different positivity criteria. Special attention is on positive maps arising in the study of quantum information science. Results of other researchers are extended and improved. New classes of positive maps are constructed. Some open questions are answered.

[1]  Seung-Hyeok Kye,et al.  DUALITY FOR POSITIVE LINEAR MAPS IN MATRIX ALGEBRAS , 2000 .

[2]  J. Hou A characterization of positive linear maps and criteria of entanglement for quantum states , 2010, 1007.0560.

[3]  J. Hou A CHARACTERIZATION OF POSITIVE ELEMENTARY OPERATORS , 1998 .

[4]  Arvind,et al.  Extremal extensions of entanglement witnesses: Finding new bound entangled states , 2011, 1106.4279.

[5]  J. Pillis Linear transformations which preserve hermitian and positive semidefinite operators. , 1967 .

[6]  Chi-Kwong Li,et al.  Interpolation by completely positive maps , 2011 .

[7]  Karol Zyczkowski,et al.  Cones of positive maps and their duality relations , 2009, 0902.4877.

[8]  M. Horodecki,et al.  Reduction criterion of separability and limits for a class of distillation protocols , 1999 .

[9]  E. Størmer,et al.  Choi matrices, norms and entanglement associated with positive maps on matrix algebras , 2010, 1008.3126.

[10]  J. Hou,et al.  Positive finite rank elementary operators and characterizing entanglement of states , 2010, 1008.3682.

[11]  Man-Duen Choi Completely positive linear maps on complex matrices , 1975 .

[12]  Arvind,et al.  Extremal extensions of entanglement witnesses and their connection with unextendable product bases , 2012, 1211.3294.

[13]  Seung-Hyeok Kye,et al.  Generalized Choi maps in three-dimensional matrix algebra , 1992 .

[14]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[15]  A. Uhlmann,et al.  A problem relating to positive linear maps on matrix algebras , 1980 .

[16]  A generalization of spectral radius, numerical radius, and spectral norm , 1987 .

[17]  K. Kraus,et al.  States, effects, and operations : fundamental notions of quantum theory : lectures in mathematical physics at the University of Texas at Austin , 1983 .

[18]  Dariusz Chruściński,et al.  Spectral Conditions for Positive Maps , 2008, 0809.4909.

[19]  Andrzej Kossakowski,et al.  On the Structure of Entanglement Witnesses and New Class of Positive Indecomposable Maps , 2007, Open Syst. Inf. Dyn..

[20]  A. Winter,et al.  ON THE EXISTENCE OF PHYSICAL TRANSFORMATIONS BETWEEN SETS OF QUANTUM STATES , 2003, quant-ph/0307227.

[21]  D. Chruściński,et al.  Spectral conditions for positive maps and entanglement witnesses , 2011 .

[22]  Chi-Kwong Li,et al.  Physical transformations between quantum states , 2012, 1203.5547.

[23]  D. Chruściński,et al.  How to construct indecomposable entanglement witnesses , 2007, 0712.1114.

[24]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[25]  W. Majewski,et al.  On k-decomposability of positive maps , 2003, quant-ph/0411035.

[26]  M. Horodecki,et al.  Separability of mixed states: necessary and sufficient conditions , 1996, quant-ph/9605038.

[27]  V. Paulsen Completely Bounded Maps and Operator Algebras: Contents , 2003 .