Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters

The authors present highly selective emitters based on two-dimensional tantalum (Ta) photonic crystals, fabricated on 2 in. polycrystalline Ta substrates, for high-temperature applications, e.g., thermophotovoltaic energy conversion. In this study, a fabrication route facilitating large-area photonic crystal fabrication with high fabrication uniformity and accuracy, based on interference lithography and reactive ion etching is discussed. A deep reactive ion etch process for Ta was developed using an SF6/C4F8 based Bosch process, which enabled us to achieve ∼8.5 μm deep cavities with an aspect ratio of ∼8, with very steep and smooth sidewalls. The thermal emitters fabricated by this method show excellent spectral selectivity, enhancement of the emissivity below cut-off approaching unity, and a sharp cut-off between the high emissivity region and the low emissivity region, while maintaining the low intrinsic emissivity of bare Ta above the cut-off wavelength. The experimental results show excellent agreemen...

[1]  Erik Hyde Anderson Fabrication and electromagnetic applications of periodic nanostructures , 1988 .

[2]  Mark L. Schattenburg,et al.  X-ray/VUV transmission gratings for astrophysical and laboratory applications , 1990 .

[3]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[4]  Mark L. Schattenburg,et al.  Optically matched trilevel resist process for nanostructure fabrication , 1995 .

[5]  Mark L. Schattenburg,et al.  Large‐area achromatic interferometric lithography for 100 nm period gratings and grids , 1996 .

[6]  Volker Wittwer,et al.  Radiation filters and emitters for the NIR based on periodically structured metal surfaces , 2000 .

[7]  Joachim Luther,et al.  Efficiency and power density potential of combustion-driven thermophotovoltaic systems using GaSb photovoltaic cells , 2001 .

[8]  J. Luther,et al.  Thermal stability of micro‐structured selective tungsten emitters , 2003 .

[9]  Yoshiaki Kanamori,et al.  High-temperature resistive surface grating for spectral control of thermal radiation , 2003 .

[10]  J. G. Fleming,et al.  Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation , 2003 .

[11]  James G. Fleming,et al.  Origin of absorption enhancement in a tungsten, three-dimensional photonic crystal , 2003 .

[12]  Hiroo Yugami,et al.  Thermophotovoltaic generation with selective radiators based on tungsten surface gratings , 2004 .

[13]  Ivan Celanovic,et al.  Design and optimization of one-dimensional photonic crystals for thermophotovoltaic applications. , 2004, Optics letters.

[14]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[15]  Kazumi Wada,et al.  Optical characteristics of one-dimensional Si∕SiO2 photonic crystals for thermophotovoltaic applications , 2005 .

[16]  Christopher J. Crowley,et al.  Thermophotovoltaic Converter Performance for Radioisotope Power Systems , 2005 .

[17]  Marin Soljacić,et al.  Thermal emission and design in 2D-periodic metallic photonic crystal slabs. , 2006, Optics express.

[18]  A. S. Vlasov,et al.  Solar thermophotovoltaic converters based on tungsten emitters , 2007 .

[19]  Prashant Nagpal,et al.  Efficient low-temperature thermophotovoltaic emitters from metallic photonic crystals. , 2008, Nano letters.

[20]  Ivan Celanovic,et al.  Two-dimensional tungsten photonic crystals as selective thermal emitters , 2008 .

[21]  Shanhui Fan,et al.  Tungsten black absorber for solar light with wide angular operation range , 2008 .

[22]  Mukul Agrawal,et al.  Design of wide-angle solar-selective absorbers using aperiodic metal-dielectric stacks. , 2009, Optics express.

[23]  Steven G. Johnson,et al.  Meep: A flexible free-software package for electromagnetic simulations by the FDTD method , 2010, Comput. Phys. Commun..

[24]  Mukul Agrawal,et al.  High performance solar-selective absorbers using coated sub-wavelength gratings. , 2010, Optics express.

[25]  I. Celanovic,et al.  Tailoring thermal emission via Q matching of photonic crystal resonances , 2011 .

[26]  Mark D. Losego,et al.  Electrodeposited 3D Tungsten Photonic Crystals with Enhanced Thermal Stability , 2011 .

[27]  Marin Soljacic,et al.  Fabrication of two-dimensional tungsten photonic crystals for high-temperature applications , 2011 .

[28]  Prashant Nagpal,et al.  Fabrication of carbon/refractory metal nanocomposites as thermally stable metallic photonic crystals , 2011 .

[29]  Y. X. Yeng,et al.  Tailoring photonic metamaterial resonances for thermal radiation , 2011, Nanoscale Research Letters.

[30]  Marin Soljacic,et al.  Design and global optimization of high-efficiency solar thermal systems with tungsten cermets. , 2011, Optics express.

[31]  Y. X. Yeng,et al.  Recent developments in high-temperature photonic crystals for energy conversion , 2012 .

[32]  Y. X. Yeng,et al.  Enabling high-temperature nanophotonics for energy applications , 2012, Proceedings of the National Academy of Sciences.