Parallel implementation of the ab initio CRYSTAL program: electronic structure calculations for periodic systems

CRYSTAL is an ab initio electronic structure program, based on the linear combination of atomic orbitals, for periodic systems. This paper concerns the ability of CRYSTAL to exploit massively parallel computer hardware. A brief review of the theory, numerical implementations and parallel solutions will be given and some of the functionalities and capabilities highlighted. Some features that are unique to CRYSTAL will be described and development plans outlined.

[1]  Benjamin T. Miller,et al.  A parallel implementation of the analytic nuclear gradient for time-dependent density functional theory within the Tamm–Dancoff approximation , 1999 .

[2]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[3]  Walter Thiel,et al.  DL-FIND: an open-source geometry optimizer for atomistic simulations. , 2009, The journal of physical chemistry. A.

[4]  A. Szabo,et al.  Modern quantum chemistry , 1982 .

[5]  N. Harrison,et al.  On the prediction of band gaps from hybrid functional theory , 2001 .

[6]  R. Parr Density-functional theory of atoms and molecules , 1989 .

[7]  A. Becke Correlation energy of an inhomogeneous electron gas: A coordinate‐space model , 1988 .

[8]  Richard M. Martin Electronic Structure: Frontmatter , 2004 .

[9]  F. Stern Self-Consistent Results for n -Type Si Inversion Layers , 1972 .

[10]  M. Head‐Gordon,et al.  Configuration interaction singles, time-dependent Hartree-Fock, and time-dependent density functional theory for the electronic excited states of extended systems , 1999 .

[11]  Roberto Dovesi,et al.  Coupled perturbed Hartree-Fock for periodic systems: the role of symmetry and related computational aspects. , 2008, The Journal of chemical physics.

[12]  R. Martin,et al.  Electronic Structure: Basic Theory and Practical Methods , 2004 .

[13]  A. Becke A New Mixing of Hartree-Fock and Local Density-Functional Theories , 1993 .

[14]  N. Harrison An Introduction to Density Functional Theory , 2002 .

[15]  R. Ahlrichs,et al.  Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory , 1996 .

[16]  Ian J. Bush,et al.  The GAMESS-UK electronic structure package: algorithms, developments and applications , 2005 .

[17]  L. Bartolotti,et al.  An Introduction to Density Functional Theory , 2007 .

[18]  S. Tomić,et al.  First-principles optical response of semiconductors and oxide materials , 2011 .

[19]  S. Tomić,et al.  The group III–V's semiconductor energy gaps predicted using the B3LYP hybrid functional , 2008 .

[20]  Michel Dupuis,et al.  Ab initio analytic polarizability, first and second hyperpolarizabilities of large conjugated organic molecules: Applications to polyenes C4H6 to C22H24 , 1988 .

[21]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[22]  Implementation of Nudged Elastic Band in CRYSTAL , 2005 .

[23]  D. Sánchez-Portal,et al.  The SIESTA method for ab initio order-N materials simulation , 2001, cond-mat/0111138.

[24]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .