An Enhanced Background Estimation Algorithm for Vehicle Detection in Urban Traffic Video

This paper proposes an enhanced version of the sigma delta background estimation method, suitable for urban traffic scenes. In the original algorithm, the background model quickly degrades in such complex scenes, being easily contaminated by slow moving or temporarily stopped vehicles. Some heuristics have been added to the basic algorithm in order to make a selective background model updating at the pixel level. Experimental tests made over typical urban traffic streams prove the validity of the proposed enhanced version.

[1]  David Zhang,et al.  Moving Vehicle Detection for Automatic Traffic Monitoring , 2007, IEEE Transactions on Vehicular Technology.

[2]  Luc Vincent,et al.  Morphological grayscale reconstruction in image analysis: applications and efficient algorithms , 1993, IEEE Trans. Image Process..

[3]  Chandrika Kamath,et al.  Robust Background Subtraction with Foreground Validation for Urban Traffic Video , 2005, EURASIP J. Adv. Signal Process..

[4]  Oncel Tuzel,et al.  Bayesian background modeling for foreground detection , 2005, VSSN@MM.

[5]  Jitendra Malik,et al.  A real-time computer vision system for measuring traffic parameters , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[6]  Roberto Cipolla,et al.  Semantic object classes in video: A high-definition ground truth database , 2009, Pattern Recognit. Lett..

[7]  Tiziana D'Orazio,et al.  Moving object segmentation by background subtraction and temporal analysis , 2006, Image Vis. Comput..

[8]  Javier Ruiz Hidalgo,et al.  Connected operators based on reconstruction process for size and motion simplification , 2002, 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[9]  Michael Harville,et al.  A Framework for High-Level Feedback to Adaptive, Per-Pixel, Mixture-of-Gaussian Background Models , 2002, ECCV.

[10]  Rita Cucchiara,et al.  Detecting Moving Objects, Ghosts, and Shadows in Video Streams , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Sergio A. Velastin,et al.  Automatic congestion detection system for underground platforms , 2001, Proceedings of 2001 International Symposium on Intelligent Multimedia, Video and Speech Processing. ISIMP 2001 (IEEE Cat. No.01EX489).

[12]  Serge Miguet,et al.  Real Time Foreground-Background Segmentation Using a Modified Codebook Model , 2009, 2009 Sixth IEEE International Conference on Advanced Video and Signal Based Surveillance.

[13]  Kentaro Toyama,et al.  Wallflower: principles and practice of background maintenance , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[14]  Jitendra Malik,et al.  Towards robust automatic traffic scene analysis in real-time , 1994, Proceedings of 12th International Conference on Pattern Recognition.

[15]  Stan Sclaroff,et al.  Segmenting foreground objects from a dynamic textured background via a robust Kalman filter , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[16]  Antoine Manzanera,et al.  A new motion detection algorithm based on Sigma-Delta background estimation , 2007, Pattern Recognit. Lett..

[17]  Mahmood Fathy,et al.  A window-based image processing technique for quantitative and qualitative analysis of road traffic parameters , 1998 .

[18]  Manuel G. Ortega,et al.  Improved sigma-delta background estimation for vehicle detection , 2009 .

[19]  Nikos Paragios,et al.  Background modeling and subtraction of dynamic scenes , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[20]  Massimo Piccardi,et al.  Background subtraction techniques: a review , 2004, 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583).

[21]  Bo Yang,et al.  VISATRAM: a real-time vision system for automatic traffic monitoring , 2000, Image Vis. Comput..

[22]  K. P. Karmann,et al.  Moving object recognition using an adaptive background memory , 1990 .

[23]  Mubarak Shah,et al.  Automatically Tuning Background Subtraction Parameters using Particle Swarm Optimization , 2007, 2007 IEEE International Conference on Multimedia and Expo.

[24]  Jitendra Malik,et al.  Robust Multiple Car Tracking with Occlusion Reasoning , 1994, ECCV.

[25]  A. Manzanera Σ-Δ Background Subtraction and the Zipf Law , 2007 .

[26]  Antoine Manzanera Sigma-Delta Background Subtraction and the Zipf Law , 2007, CIARP.

[27]  Larry S. Davis,et al.  Real-time foreground-background segmentation using codebook model , 2005, Real Time Imaging.

[28]  Mohan M. Trivedi,et al.  Detecting Moving Shadows: Algorithms and Evaluation , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  Chandrika Kamath,et al.  Robust techniques for background subtraction in urban traffic video , 2004, IS&T/SPIE Electronic Imaging.

[30]  Nikos Paragios,et al.  Motion-based background subtraction using adaptive kernel density estimation , 2004, CVPR 2004.

[31]  Alex Pentland,et al.  Pfinder: Real-Time Tracking of the Human Body , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[32]  Larry S. Davis,et al.  W4: Real-Time Surveillance of People and Their Activities , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[33]  Larry S. Davis,et al.  Non-parametric Model for Background Subtraction , 2000, ECCV.

[34]  Quming Zhou,et al.  Tracking and Classifying Moving Objects from Video , 2001 .

[35]  Stanley T. Birchfield,et al.  Real-Time Incremental Segmentation and Tracking of Vehicles at Low Camera Angles Using Stable Features , 2008, IEEE Transactions on Intelligent Transportation Systems.

[36]  Henk J. A. M. Heijmans Connected Morphological Operators for Binary Images , 1999, Comput. Vis. Image Underst..

[37]  Paul L. Rosin,et al.  Evaluation of global image thresholding for change detection , 2003, Pattern Recognit. Lett..

[38]  Alex Pentland,et al.  A Bayesian Computer Vision System for Modeling Human Interactions , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[39]  Y.-D. Kim,et al.  Neural-edge-based vehicle detection and traffic parameter extraction , 2004, Image Vis. Comput..

[40]  W. Eric L. Grimson,et al.  Adaptive background mixture models for real-time tracking , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[41]  P. Wayne Power,et al.  Understanding Background Mixture Models for Foreground Segmentation , 2002 .

[42]  W. Eric L. Grimson,et al.  Learning Patterns of Activity Using Real-Time Tracking , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[43]  Mark Goadrich,et al.  The relationship between Precision-Recall and ROC curves , 2006, ICML.

[44]  Antoine Manzanera,et al.  A Robust and Computationally Efficient Motion Detection Algorithm Based on Sigma-Delta Background Estimation , 2004, ICVGIP.

[45]  Sergio L. Toral Marín,et al.  Embedded Multimedia Processors for Road-Traffic Parameter Extension , 2009, Computer.

[46]  P. G. Michalopoulos,et al.  Vehicle detection video through image processing: the Autoscope system , 1991 .

[47]  Larry S. Davis,et al.  A Perturbation Method for Evaluating Background Subtraction Algorithms , 2003 .

[48]  Peter H. A. Sneath,et al.  Numerical Taxonomy: The Principles and Practice of Numerical Classification , 1973 .