Optimum Positioning of Ports in the Limaçon Gas Expanders

Positive displacement expanders are quickly gaining popularity in the fields of micropower generation and refrigeration engineering. Unlike turbomachines, expanders can handle two-phase flow applications at low speed and flow rate levels. This paper is concerned with a simple-design positive displacement expander based on the limacon of Pascal. The paper offers an insight into the thermodynamic workings of the limacon gas expander and presents a mathematical model to describe the manner in which the port locations affect the expander performance. A stochastic optimization technique is adopted to find the locations, for the expander ports, which produce best expander performance for given chamber dimensions. The operating speed and other parameters will be held constant during the optimization procedure. A case study is offered in this paper to prove the validity of the presented approach, and comments are given on how various operating parameters affect system performance in the limacon design.

[1]  Vincent Lemort,et al.  Testing and modeling a scroll expander integrated into an Organic Rankine Cycle , 2009 .

[2]  Eckhard A. Groll,et al.  Piston-cylinder work producing expansion device in a transcritical carbon dioxide cycle. Part I: experimental investigation , 2005 .

[3]  X Peng,et al.  Thermodynamic analysis of the rotary tooth compressor , 2002 .

[4]  P. Moore,et al.  Modelling study and servo-control of air motor systems , 1998 .

[5]  M. Rotea,et al.  Simultaneous-Perturbation-Stochastic-Approximation Algorithm for Parachute Parameter Estimation , 2005 .

[6]  Richard N. Christensen,et al.  EXPERIMENTAL TESTING OF GEROTOR AND SCROLL EXPANDERS USED IN, AND ENERGETIC AND EXERGETIC MODELING OF, AN ORGANIC RANKINE CYCLE , 2009 .

[7]  Ibrahim A. Sultan Profiling Rotors for Limaçon-to-Limaçon Compression-Expansion Machines , 2006 .

[8]  Hailei Wang,et al.  Experimental performance of a compliant scroll expander for an organic Rankine cycle , 2009 .

[9]  Xueyuan Peng,et al.  Study of a Rotary Vane Expander for the Transcritical CO2 Cycle—Part I: Experimental Investigation , 2009 .

[10]  M. Goldfarb,et al.  On the Observability of Pressure in a Pneumatic Servo Actuator , 2004 .

[11]  I. S. Ertesvåg Analysis of the Vading concept-a new rotary-piston compressor, expander and engine principle , 2002 .

[12]  Masayuki Kakuda,et al.  305 Development of a Scroll Expander for the CO_2 Refrigeration Cycle , 2012 .

[13]  Noboru Yamada,et al.  Solar Rankine Cycle System Using Scroll Expander , 2007 .

[14]  Shu Pengcheng,et al.  Research on a Scroll Expander Used for Recovering Work in a Fuel Cell , 2004 .

[15]  A. D. Vanyashov,et al.  Determining the principal parameters of piston expansion engines by different computational methods , 2004 .

[16]  Masayuki Kakuda,et al.  Development of a Scroll Expander for the CO2 Refrigeration Cycle , 2009 .

[17]  Ibrahim A. Sultan Inverse geometric design for a class of rotary positive displacement machines , 2008 .

[18]  J. Spall Multivariate stochastic approximation using a simultaneous perturbation gradient approximation , 1992 .

[19]  Pengcheng Shu,et al.  Development of a double acting free piston expander for power recovery in transcritical co2 cycle , 2007 .

[20]  I. A. Sultan The Limaçon of Pascal: Mechanical Generation and Utilization for Fluid Processing , 2005 .

[21]  Hua Tian,et al.  A Rolling Piston-Type Two-Phase Expander in the Transcritical CO2 Cycle , 2009 .

[22]  Stefan Z. Miska,et al.  Performance of Positive Displacement Motor (PDM) Operating On Air , 2003 .