Ribosomal incorporation of cyclic β-amino acids into peptides using in vitro translation.

We demonstrate in vitro incorporation of cyclic β-amino acids into peptides by the ribosome through genetic code reprogramming. Further, we show that incorporation efficiency can be increased through the addition of elongation factor P.

[1]  T. Katoh,et al.  Ribosomal Elongation of Cyclic γ-Amino Acids using a Reprogrammed Genetic Code. , 2020, Journal of the American Chemical Society.

[2]  Jeffery M. Tharp,et al.  Hijacking Translation Initiation for Synthetic Biology , 2020, Chembiochem : a European journal of chemical biology.

[3]  Anselm F. L. Schneider,et al.  Front Cover: N ‐Hydroxysuccinimide‐Modified Ethynylphosphonamidates Enable the Synthesis of Configurationally Defined Protein Conjugates (ChemBioChem 1‐2/2020) , 2020 .

[4]  M. Jewett,et al.  Strategies for in vitro engineering of the translation machinery , 2019, Nucleic acids research.

[5]  Timothy W. Craven,et al.  De novo carborane-containing macrocyclic peptides targeting human EGFR. , 2019, Journal of the American Chemical Society.

[6]  Jaime N. Coronado,et al.  Expanding the limits of the second genetic code with ribozymes , 2019, Nature Communications.

[7]  Erik D. Carlson,et al.  In vitro ribosome synthesis and evolution through ribosome display , 2019, bioRxiv.

[8]  Scott J. Miller,et al.  Translation of Diverse Aramid- and 1,3-Dicarbonyl-peptides by Wild Type Ribosomes in Vitro , 2019, ACS central science.

[9]  C. Douat,et al.  Optimizing aromatic oligoamide foldamer side-chains for ribosomal translation initiation. , 2019, Chemical communications.

[10]  Yasuyoshi Watanabe,et al.  Macrocyclic peptide-based inhibition and imaging of hepatocyte growth factor , 2019, Nature Chemical Biology.

[11]  S. Hecht,et al.  Expanding the Scope of Protein Synthesis Using Modified Ribosomes. , 2019, Journal of the American Chemical Society.

[12]  H. Suga,et al.  Macrocyclic Peptides as Drug Candidates: Recent Progress and Remaining Challenges. , 2019, Journal of the American Chemical Society.

[13]  L. Hicks,et al.  Flexizyme-Enabled Benchtop Biosynthesis of Thiopeptides. , 2019, Journal of the American Chemical Society.

[14]  Farren J. Isaacs,et al.  Next-generation genetic code expansion. , 2018, Current opinion in chemical biology.

[15]  T. Katoh,et al.  Ribosomal Incorporation of Consecutive β-Amino Acids. , 2018, Journal of the American Chemical Society.

[16]  J. M. Rogers,et al.  Ribosomal synthesis and folding of peptide-helical aromatic foldamer hybrids , 2018, Nature Chemistry.

[17]  Jason W. Chin,et al.  Expanding and reprogramming the genetic code , 2017, Nature.

[18]  Do Soon Kim,et al.  Repurposing ribosomes for synthetic biology. , 2017, Current opinion in chemical biology.

[19]  M. Rodnina,et al.  Essential structural elements in tRNAPro for EF-P-mediated alleviation of translation stalling , 2016, Nature Communications.

[20]  Allison S. Walker,et al.  In Vivo Biosynthesis of a β-Amino Acid-Containing Protein. , 2016, Journal of the American Chemical Society.

[21]  T. Natsume,et al.  Directed Evolution of a Cyclized Peptoid-Peptide Chimera against a Cell-Free Expressed Protein and Proteomic Profiling of the Interacting Proteins to Create a Protein-Protein Interaction Inhibitor. , 2016, ACS chemical biology.

[22]  H. Murakami,et al.  Ribosomal Synthesis of Peptides with Multiple β-Amino Acids. , 2016, Journal of the American Chemical Society.

[23]  J. M. Rogers,et al.  Discovering functional, non-proteinogenic amino acid containing, peptides using genetic code reprogramming. , 2015, Organic & biomolecular chemistry.

[24]  H. Suga,et al.  Ribosomal synthesis of an amphotericin-B inspired macrocycle. , 2014, Journal of the American Chemical Society.

[25]  H. Murakami,et al.  Extensive reprogramming of the genetic code for genetically encoded synthesis of highly N-alkylated polycyclic peptidomimetics. , 2013, Journal of the American Chemical Society.

[26]  S. Hecht,et al.  Incorporation of β-amino acids into dihydrofolate reductase by ribosomes having modifications in the peptidyltransferase center. , 2013, Bioorganic & medicinal chemistry.

[27]  Daniel N. Wilson,et al.  Lys34 of translation elongation factor EF-P is hydroxylated by YfcM. , 2012, Nature chemical biology.

[28]  S. Hecht,et al.  β-Puromycin selection of modified ribosomes for in vitro incorporation of β-amino acids. , 2012, Biochemistry.

[29]  Yuuki Hayashi,et al.  Flexizymes: their evolutionary history and the origin of catalytic function. , 2011, Accounts of chemical research.

[30]  T. Katoh,et al.  Flexizymes for genetic code reprogramming , 2011, Nature Protocols.

[31]  H. Murakami,et al.  Polymerization of α‐Hydroxy Acids by Ribosomes , 2008, Chembiochem : a European journal of chemical biology.

[32]  H. Murakami,et al.  Synthesis of polyester by means of genetic code reprogramming. , 2007, Chemistry & biology.

[33]  Hiroshi Murakami,et al.  A highly flexible tRNA acylation method for non-natural polypeptide synthesis , 2006, Nature Methods.