Localization–delocalization transition for disordered cubic harmonic lattices

We study numerically the disorder-induced localization-delocalization phase transitions that occur for mass and spring constant disorder in a three-dimensional cubic lattice with harmonic couplings. We show that, while the phase diagrams exhibit regions of stable and unstable waves, the universality of the transitions is the same for mass and spring constant disorder throughout all the phase boundaries. The combined value for the critical exponent of the localization lengths of ν = 1.550(-0.017)(+0.020) confirms the agreement with the universality class of the standard electronic Anderson model of localization. We further support our investigation with studies of the density of states, the participation numbers and wave function statistics.

[1]  P. Anderson Absence of Diffusion in Certain Random Lattices , 1958 .

[2]  F. Dyson Statistical Theory of the Energy Levels of Complex Systems. I , 1962 .

[3]  V. I. Oseledec A multiplicative ergodic theorem: Lyapunov characteristic num-bers for dynamical systems , 1968 .

[4]  F. Yonezawa A Systematic Approach to the Problems of Random Lattices. I A Self-Contained First-Order Approximation Taking into Account the Exclusion Effect , 1968 .

[5]  G. Joyce,et al.  On the simple cubic lattice Green function , 1973, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[6]  F. Yonezawa,et al.  Coherent Potential Approximation. Basic concepts and applications , 1973 .

[7]  A. MacKinnon,et al.  One-Parameter Scaling of Localization Length and Conductance in Disordered Systems , 1981 .

[8]  T. V. Ramakrishnan,et al.  Disordered electronic systems , 1985 .

[9]  J. V. Hemmen,et al.  Localisation of phonons , 1985 .

[10]  M. Schreiber,et al.  Localization, quantum interference, and the metal-insulator transition , 1987 .

[11]  Michael Schreiber,et al.  The Anderson transition: New numerical results for the critical exponents , 1990 .

[12]  Allen,et al.  Thermal conductivity and localization in glasses: Numerical study of a model of amorphous silicon. , 1993, Physical review. B, Condensed matter.

[13]  T. Keyes,et al.  Unstable modes in liquids density of states, potential energy, and heat capacity , 1993 .

[14]  B. Kramer,et al.  Localization: theory and experiment , 1993 .

[15]  CRITICAL EXPONENTS FOR THE METAL-INSULATOR-TRANSITION , 1993, cond-mat/9312024.

[16]  Y. Fyodorov,et al.  STATISTICAL PROPERTIES OF EIGENFUNCTIONS OF RANDOM QUASI 1D ONE-PARTICLE HAMILTONIANS , 1994 .

[17]  T. R. Kirkpatrick,et al.  The Anderson-Mott transition , 1994 .

[18]  Bembenek,et al.  Instantaneous normal modes and the glass transition. , 1995, Physical review letters.

[19]  Schreiber,et al.  Determination of the mobility edge in the Anderson model of localization in three dimensions by multifractal analysis. , 1995, Physical review. B, Condensed matter.

[20]  B. Laird,et al.  The role of localization in glasses and supercooled liquids , 1996 .

[21]  Michael Schreiber,et al.  STATISTICS OF WAVE FUNCTIONS IN DISORDERED AND IN CLASSIFICALLY CHAOTIC SYSTEMS , 1997 .

[22]  Harmonic Vibrational Excitations in Disordered Solids and the “Boson Peak” , 1998, cond-mat/9801249.

[23]  Chao Yang,et al.  ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.

[24]  Anderson Transition of Three Dimensional Phonon Modes , 1998, cond-mat/9809220.

[25]  W. Schirmacher,et al.  Propagation and localisation of vibrational modes in 3–dimensional disordered systems: the binary force constant model , 1999 .

[26]  M. Schreiber,et al.  Phase diagram of the three-dimensional Anderson model of localization with random hopping , 1999, cond-mat/9908255.

[27]  CORRECTIONS TO SCALING AT THE ANDERSON TRANSITION , 1998, cond-mat/9812065.

[28]  P. Sheng,et al.  Locally resonant sonic materials , 2000, Science.

[29]  Exact diagonalization study of rare events in disordered conductors , 2000 .

[30]  M. Schreiber,et al.  Off‐Diagonal Disorder in the Anderson Model of Localization , 2000 .

[31]  A. Mirlin,et al.  Statistics of energy levels and eigenfunctions in disordered systems , 2000 .

[32]  Statistical properties of eigenstates in three-dimensional mesoscopic systems with off-diagonal or diagonal disorder , 2000, cond-mat/0003057.

[33]  Excess modes in the vibrational spectrum of disordered systems and the boson peak , 2000, cond-mat/0012392.

[34]  J. J. Ludlam,et al.  Numerical analysis of the vibrational eigenmodes of a 2D disordered lattice , 2001 .

[35]  S. Elliott,et al.  Disorder-induced zero-energy spectral singularity for random matrices with correlations , 2001, cond-mat/0111276.

[36]  Coherent potential approximation technique in a simple example of resistivity calculations for binary alloys , 2002 .

[37]  G. Natarajan,et al.  Propagation, hybridization and localization of vibrational excitations in disordered materials , 2002 .

[38]  S. Russ Scaling of the localization length in linear electronic and vibrational systems with long-range correlated disorder , 2002, cond-mat/0205543.

[39]  S. Kettemann,et al.  Anderson localization and its ramifications : disorder, phase coherence and electron correlations , 2003 .

[40]  S. Elliott,et al.  Disorder-induced vibrational localization , 2002, cond-mat/0208018.

[41]  S. Sarkar,et al.  Universality in the vibrational spectra of single-component amorphous clusters. , 2004, Physical review letters.

[42]  M. Hirsekorn,et al.  Small-size sonic crystals with strong attenuation bands in the audible frequency range , 2004 .

[43]  David Alan Drabold,et al.  Universal features of localized eigenstates in disordered systems , 2005 .

[44]  G. Hilton,et al.  Cooling of bulk material by electron-tunneling refrigerators , 2005 .

[45]  Continuum limit of amorphous elastic bodies. III. Three-dimensional systems , 2005, cond-mat/0505610.

[46]  N. Fang,et al.  Ultrasonic metamaterials with negative modulus , 2006, Nature materials.

[47]  Rudolf A. Römer,et al.  On Large-Scale Diagonalization Techniques for the Anderson Model of Localization , 2006, SIAM J. Sci. Comput..

[48]  High-frequency dynamics in metallic glasses. , 2006, Physical review letters.

[49]  Y. Fyodorov,et al.  Exact relations between multifractal exponents at the Anderson transition. , 2006, Physical review letters.

[50]  Jensen Li,et al.  On extending the concept of double negativity to acoustic waves , 2006 .

[51]  Inhomogeneous elastic response of silica glass. , 2006, Physical review letters.

[52]  A. Mirlin,et al.  Anderson Transitions , 2007, 0707.4378.

[53]  Chunyin Qiu,et al.  Metamaterial with simultaneously negative bulk modulus and mass density. , 2007, Physical review letters.

[54]  T. Nakayama,et al.  Peculiar behaviors of excited modes in harmonic chains with correlated disorder , 2007 .

[55]  R. Roemer,et al.  Multifractal analysis of the metal-insulator transition in the 3D Anderson model II: Symmetry relation under ensemble averaging , 2008 .

[56]  A. Aspect,et al.  Direct observation of Anderson localization of matter waves in a controlled disorder , 2008, Nature.

[57]  Gengkai Hu,et al.  Experimental study on negative effective mass in a 1D mass–spring system , 2008 .

[58]  Massimo Inguscio,et al.  Anderson localization of a non-interacting Bose–Einstein condensate , 2008, Nature.

[59]  R. Roemer,et al.  Multifractal analysis of the metal-insulator transition in the three-dimensional Anderson model. I. Symmetry relation under typical averaging , 2008, 0807.2217.

[60]  A. Lagendijk,et al.  Observation of multifractality in Anderson localization of ultrasound. , 2009, Physical review letters.

[61]  R. Cobbold,et al.  The Characteristics and Applications of Metamaterials , 2009 .

[62]  Stefano Mossa,et al.  Anomalous properties of the acoustic excitations in glasses on the mesoscopic length scale , 2009, Proceedings of the National Academy of Sciences.

[63]  Ten-Ming Wu,et al.  Localization-delocalization transition in Hessian matrices of topologically disordered systems. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[64]  C. Sun,et al.  Wave attenuation mechanism in an acoustic metamaterial with negative effective mass density , 2009 .

[65]  N. Fang,et al.  Focusing ultrasound with an acoustic metamaterial network. , 2009, Physical review letters.

[66]  R. Römer,et al.  Critical parameters from a generalized multifractal analysis at the Anderson transition. , 2010, Physical review letters.

[67]  B. Huang,et al.  Multifractality of instantaneous normal modes at mobility edges. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[68]  Negative-dynamic-mass response without localized resonance , 2010 .

[69]  T. Garel,et al.  Anderson localization of phonons in dimension d = 1 , 2 , 3 : Finite-size properties of the inverse participation ratios of eigenstates , 2010, 1003.5988.

[70]  Study of the localization-delocalization transition for phonons via transfer matrix method techniques , 2011, 1102.0790.

[71]  R. Roemer,et al.  Multifractal finite-size scaling and universality at the Anderson transition , 2011, 1107.5736.

[72]  M. Dresselhaus,et al.  Perspectives on thermoelectrics: from fundamentals to device applications , 2012 .

[73]  W. Schirmacher,et al.  Download details: IP Address: 141.108.6.91 , 2011 .

[74]  Yu. D. Fomin,et al.  Where is the supercritical fluid on the phase diagram? , 2012 .