Toxicity of Familial ALS-Linked SOD1 Mutants from Selective Recruitment to Spinal Mitochondria

One cause of amyotrophic lateral sclerosis (ALS) is mutation in ubiquitously expressed copper/zinc superoxide dismutase (SOD1), but the mechanism of toxicity to motor neurons is unknown. Multiple disease-causing mutants, but not wild-type SOD1, are now demonstrated to be recruited to mitochondria, but only in affected tissues. This is independent of the copper chaperone for SOD1 and dismutase activity. Highly preferential association with spinal cord mitochondria is seen in human ALS for a mutant SOD1 that accumulates only to trace cytoplasmic levels. Despite variable proportions that are successfully imported, nearly constant amounts of SOD1 mutants and covalently damaged adducts of them accumulate as apparent import intermediates and/or are tightly aggregated or crosslinked onto integral membrane components on the cytoplasmic face of those mitochondria. These findings implicate damage from action of spinal cord-specific factors that recruit mutant SOD1 to spinal mitochondria as the basis for their selective toxicity in ALS.

[1]  J S Beckman,et al.  Induction of nitric oxide-dependent apoptosis in motor neurons by zinc-deficient superoxide dismutase. , 1999, Science.

[2]  Jennifer Stine Elam,et al.  Amyloid-like filaments and water-filled nanotubes formed by SOD1 mutant proteins linked to familial ALS , 2003, Nature Structural Biology.

[3]  V. Culotta,et al.  Chaperone-facilitated copper binding is a property common to several classes of familial amyotrophic lateral sclerosis-linked superoxide dismutase mutants. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[4]  P. Stieg,et al.  Functional role of caspase-1 and caspase-3 in an ALS transgenic mouse model. , 2000, Science.

[5]  Nicholas J. Hoogenraad,et al.  Molecular Chaperones Hsp90 and Hsp70 Deliver Preproteins to the Mitochondrial Import Receptor Tom70 , 2003, Cell.

[6]  Minh N. H. Nguyen,et al.  Wild-Type Nonneuronal Cells Extend Survival of SOD1 Mutant Motor Neurons in ALS Mice , 2003, Science.

[7]  R. H. Brown,et al.  A transgenic-mouse model of amyotrophic lateral sclerosis. , 1994, The New England journal of medicine.

[8]  L. T. Jensen,et al.  A fraction of yeast Cu,Zn-superoxide dismutase and its metallochaperone, CCS, localize to the intermembrane space of mitochondria. A physiological role for SOD1 in guarding against mitochondrial oxidative damage. , 2001, The Journal of biological chemistry.

[9]  I. Fridovich,et al.  Subcellular Distribution of Superoxide Dismutases (SOD) in Rat Liver , 2001, The Journal of Biological Chemistry.

[10]  Jeffrey D. Rothstein,et al.  From charcot to lou gehrig: deciphering selective motor neuron death in als , 2001, Nature Reviews Neuroscience.

[11]  Geoffrey Burnstock,et al.  Treatment with arimoclomol, a coinducer of heat shock proteins, delays disease progression in ALS mice , 2004, Nature Medicine.

[12]  P. Andersen,et al.  Manganese‐containing superoxide dismutase signal sequence polymorphism associated with sporadic motor neuron disease , 1999, European journal of neurology.

[13]  M. Koenig,et al.  Friedreich ataxia: a paradigm for mitochondrial diseases. , 2002, Current opinion in genetics & development.

[14]  Thomas V. O'Halloran,et al.  Metallochaperones, an Intracellular Shuttle Service for Metal Ions* , 2000, The Journal of Biological Chemistry.

[15]  G. Rosoklija,et al.  Recruitment of the Mitochondrial-Dependent Apoptotic Pathway in Amyotrophic Lateral Sclerosis , 2001, The Journal of Neuroscience.

[16]  R. Casareno,et al.  The Copper Chaperone for Superoxide Dismutase* , 1997, The Journal of Biological Chemistry.

[17]  M. Vila,et al.  Instrumental Activation of Bid by Caspase-1 in a Transgenic Mouse Model of ALS , 2002, Molecular and Cellular Neuroscience.

[18]  A. Pramatarova,et al.  Neuron-Specific Expression of Mutant Superoxide Dismutase 1 in Transgenic Mice Does Not Lead to Motor Impairment , 2001, The Journal of Neuroscience.

[19]  D. Borchelt,et al.  High Molecular Weight Complexes of Mutant Superoxide Dismutase 1: Age-Dependent and Tissue-Specific Accumulation , 2002, Neurobiology of Disease.

[20]  I. Fridovich,et al.  Amyotrophic lateral sclerosis: A proposed mechanism , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[21]  M. Beal,et al.  Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury , 1996, Nature Genetics.

[22]  M. Gurney,et al.  Development of central nervous system pathology in a murine transgenic model of human amyotrophic lateral sclerosis. , 1994, The American journal of pathology.

[23]  D. Borchelt,et al.  An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria , 1995, Neuron.

[24]  Hiroshi Nishimune,et al.  Motoneuron Death Triggered by a Specific Pathway Downstream of Fas Potentiation by ALS-Linked SOD1 Mutations , 2002, Neuron.

[25]  D. Newmeyer,et al.  Mitochondria Releasing Power for Life and Unleashing the Machineries of Death , 2003, Cell.

[26]  J. Rothstein,et al.  Focal loss of the glutamate transporter EAAT2 in a transgenic rat model of SOD1 mutant-mediated amyotrophic lateral sclerosis (ALS) , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[27]  Robert H. Brown,et al.  Sixteen novel mutations in the Cu/Zn superoxide dismutase gene in amyotrophic lateral sclerosis , 2003 .

[28]  N. Pfanner,et al.  Mitochondrial protein import. , 1989, Biochimica et biophysica acta.

[29]  P. Andersen,et al.  Minute quantities of misfolded mutant superoxide dismutase-1 cause amyotrophic lateral sclerosis. , 2004, Brain : a journal of neurology.

[30]  D. Borchelt,et al.  Variation in the biochemical/biophysical properties of mutant superoxide dismutase 1 enzymes and the rate of disease progression in familial amyotrophic lateral sclerosis kindreds. , 1999, Human molecular genetics.

[31]  J. Haines,et al.  Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis , 1993, Nature.

[32]  Jeffrey Rothstein,et al.  Mutant SOD1 causes motor neuron disease independent of copper chaperone–mediated copper loading , 2002, Nature Neuroscience.

[33]  Robert H. Brown,et al.  Rats Expressing Human Cytosolic Copper–Zinc Superoxide Dismutase Transgenes with Amyotrophic Lateral Sclerosis: Associated Mutations Develop Motor Neuron Disease , 2001, The Journal of Neuroscience.

[34]  D. Borchelt,et al.  Superoxide dismutase 1 with mutations linked to familial amyotrophic lateral sclerosis possesses significant activity. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[35]  M. Carson,et al.  ALS, SOD and peroxynitrite , 1993, Nature.

[36]  M. Dubois‐Dauphin,et al.  Bcl-2: prolonging life in a transgenic mouse model of familial amyotrophic lateral sclerosis. , 1997, Science.

[37]  J. Holstege,et al.  CuZn superoxide dismutase (SOD1) accumulates in vacuolated mitochondria in transgenic mice expressing amyotrophic lateral sclerosis-linked SOD1 mutations , 2001, Acta Neuropathologica.

[38]  L. Tranebjaerg,et al.  Human deafness dystonia syndrome is caused by a defect in assembly of the DDP1/TIMM8a-TIMM13 complex. , 2002, Human molecular genetics.

[39]  P. Caroni,et al.  Accumulation of SOD1 Mutants in Postnatal Motoneurons Does Not Cause Motoneuron Pathology or Motoneuron Disease , 2002, The Journal of Neuroscience.

[40]  Zuoshang Xu,et al.  Mutant Cu, Zn Superoxide Dismutase that Causes Motoneuron Degeneration Is Present in Mitochondria in the CNS , 2002, The Journal of Neuroscience.

[41]  J. Morrison,et al.  Transgenic mice expressing an altered murine superoxide dismutase gene provide an animal model of amyotrophic lateral sclerosis. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[42]  W. Snider,et al.  Restricted Expression of G86R Cu/Zn Superoxide Dismutase in Astrocytes Results in Astrocytosis But Does Not Cause Motoneuron Degeneration , 2000, The Journal of Neuroscience.

[43]  A. Tiwari,et al.  Familial Amyotrophic Lateral Sclerosis Mutants of Copper/Zinc Superoxide Dismutase Are Susceptible to Disulfide Reduction* , 2003, The Journal of Biological Chemistry.

[44]  Betty Y. S. Kim,et al.  Minocycline inhibits cytochrome c release and delays progression of amyotrophic lateral sclerosis in mice , 2002, Nature.

[45]  Robert H. Brown,et al.  Sixteen novel mutations in the Cu/Zn superoxide dismutase gene in amyotrophic lateral sclerosis: a decade of discoveries, defects and disputes. , 2003, Amyotrophic lateral sclerosis and other motor neuron disorders : official publication of the World Federation of Neurology, Research Group on Motor Neuron Diseases.

[46]  M. Gurney,et al.  Formation of high molecular weight complexes of mutant Cu, Zn-superoxide dismutase in a mouse model for familial amyotrophic lateral sclerosis. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[47]  H. Orr A proposed mechanism of ALS fails the test in vivo , 2002, Nature Neuroscience.

[48]  M. Gurney,et al.  Protein Oxidative Damage in a Transgenic Mouse Model of Familial Amyotrophic Lateral Sclerosis , 1998, Journal of neurochemistry.

[49]  S. Merchant,et al.  Human deafness dystonia syndrome is a mitochondrial disease. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[50]  Robert H. Brown,et al.  Decreased Metallation and Activity in Subsets of Mutant Superoxide Dismutases Associated with Familial Amyotrophic Lateral Sclerosis* 210 , 2002, The Journal of Biological Chemistry.

[51]  D. Borchelt,et al.  ALS-Linked SOD1 Mutant G85R Mediates Damage to Astrocytes and Promotes Rapidly Progressive Disease with SOD1-Containing Inclusions , 1997, Neuron.

[52]  A. Dürr,et al.  Hereditary spastic paraplegia SPG13 is associated with a mutation in the gene encoding the mitochondrial chaperonin Hsp60. , 2002, American journal of human genetics.

[53]  M. Beal,et al.  Mutated Human SOD1 Causes Dysfunction of Oxidative Phosphorylation in Mitochondria of Transgenic Mice* , 2002, The Journal of Biological Chemistry.

[54]  P. Andersen,et al.  Phenotypic heterogeneity in motor neuron disease patients with CuZn-superoxide dismutase mutations in Scandinavia. , 1997, Brain : a journal of neurology.

[55]  N. Pfanner,et al.  Mitochondrial protein import: two membranes, three translocases. , 2002, Current opinion in cell biology.

[56]  Robert H. Brown,et al.  Familial Amyotrophic Lateral Sclerosis-associated Mutations Decrease the Thermal Stability of Distinctly Metallated Species of Human Copper/Zinc Superoxide Dismutase* , 2002, The Journal of Biological Chemistry.

[57]  L. Bruijn,et al.  Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type SOD1. , 1998, Science.

[58]  D. Bredesen,et al.  Altered Reactivity of Superoxide Dismutase in Familial Amyotrophic Lateral Sclerosis , 1996, Science.

[59]  J. Kong,et al.  Massive Mitochondrial Degeneration in Motor Neurons Triggers the Onset of Amyotrophic Lateral Sclerosis in Mice Expressing a Mutant SOD1 , 1998, The Journal of Neuroscience.

[60]  Y. Fujiki,et al.  Isolation of intracellular membranes by means of sodium carbonate treatment: application to endoplasmic reticulum , 1982, The Journal of cell biology.

[61]  M. Dubois‐Dauphin,et al.  Delaying Caspase Activation by Bcl-2: A Clue to Disease Retardation in a Transgenic Mouse Model of Amyotrophic Lateral Sclerosis , 2000, The Journal of Neuroscience.

[62]  M. Gurney,et al.  Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. , 1994, Science.

[63]  D. Cleveland,et al.  Caspase-1 and -3 are sequentially activated in motor neuron death in Cu,Zn superoxide dismutase-mediated familial amyotrophic lateral sclerosis. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[64]  T. O’Halloran,et al.  Factors Controlling the Uptake of Yeast Copper/Zinc Superoxide Dismutase into Mitochondria* , 2003, Journal of Biological Chemistry.