Ab initio thermodynamic study of the structure and chemical bonding of a β -Ni 1 − x Al x / α -Al 2 O 3 interface

The properties of an interface between a metallic alloy and an oxide are computed by combining ab initio quantum mechanics with thermodynamics. Results for the stability, structures, and chemical compositions of the $\ensuremath{\beta}{\text{-Ni}}_{1\ensuremath{-}x}{\text{Al}}_{x}/\ensuremath{\alpha}{\text{-Al}}_{2}{\text{O}}_{3}$ interface are presented. We found that there are two types of stable structures for the interface. Type I is characterized by joining an Al-rich Ni-Al alloy with an Al-rich ${\text{Al}}_{2}{\text{O}}_{3}$ surface (terminated by two Al atomic layers). Type II is a junction of a Ni-rich Ni-Al alloy with an ${\text{Al}}_{2}{\text{O}}_{3}$ surface terminated by an oxygen atomic layer and with atomic migrations and interchanges within the interfacial region. Both types of interfaces exhibit Al accumulation on top of the oxide scale while an adjacent Ni-rich layer is found at the type-II interfaces. The atomic geometries, electronic structures, and chemical bonds of the two types of interfacial systems were analyzed. The calculated interfacial works of separation ${W}_{sep}$ agree reasonably well with experimental data and earlier calculations.

[1]  P. Hou Segregation Phenomena at Thermally Grown Al 2 O 3 /Alloy Interfaces , 2008 .

[2]  S. Curtarolo,et al.  Theoretical study of the thermal behavior of free and alumina-supported Fe-C nanoparticles , 2006, cond-mat/0612562.

[3]  Adam Kiejna,et al.  Structural, electronic, and magnetic properties of bcc iron surfaces , 2007 .

[4]  A. Stierle,et al.  In situ x-ray study of the γ- to α-Al_2O_3 phase transformation during atmospheric pressure oxidation of NiAl(110) , 2006 .

[5]  Wenqing Zhang,et al.  Ab initio study of Ag/ Al 2 O 3 and Au/ Al 2 O 3 interfaces , 2005 .

[6]  Georg Kresse,et al.  Structure of the Ultrathin Aluminum Oxide Film on NiAl(110) , 2005, Science.

[7]  P. Nash,et al.  The enthalpy of formation of NiAl , 2005 .

[8]  M. Yoshitake,et al.  Formation of epitaxial Al2O3/NiAl(1 1 0) films: aluminium deposition , 2005 .

[9]  Joshua R. Smith,et al.  Thermodynamics fromab initiocomputations , 2004 .

[10]  A. Stierle,et al.  X-ray Diffraction Study of the Ultrathin Al2O3 Layer on NiAl(110) , 2004, Science.

[11]  H. Freund,et al.  Atomic structure of antiphase domain boundaries of a thin Al2O3 film on NiAl(110). , 2003, Physical review letters.

[12]  I. Wright,et al.  Influence of Sulfur, Platinum, and Hafnium on the Oxidation Behavior of CVD NiAl Bond Coatings , 2002 .

[13]  Joshua R. Smith,et al.  The connection between ab initio calculations and interface adhesion measurements on metal/oxide systems: Ni/Al2O3 and Cu/Al2O3 , 2002 .

[14]  M. Bäumer,et al.  Structure investigation of the topmost layer of a thin ordered alumina film grown on NiAl(110) by low temperature scanning tunneling microscopy , 2002 .

[15]  Donald J. Siegel,et al.  Adhesion, stability, and bonding at metal/metal-carbide interfaces: Al/WC , 2002 .

[16]  A. Stierle,et al.  Observation of bulk forbidden defects during the oxidation of NiAl(110) , 2001 .

[17]  P. Hou,et al.  Interfacial Segregation, Pore Formation, and Scale Adhesion on NiAl Alloys , 2001 .

[18]  I. Wright,et al.  Effects of Platinum Additions on the Adherence of Alumina Scales to CVD Aluminide Bond Coatings , 2001 .

[19]  A. Alavi,et al.  Surface energy and the early stages of oxidation of NiAl(110) , 2001 .

[20]  Joshua R. Smith,et al.  Stoichiometric interfaces of Al and Ag with Al2O3 , 2000 .

[21]  Bruce A Pint,et al.  Effect of composition on the oxidation and hot corrosion resistance of NiAl doped with precious metals , 2000 .

[22]  A. G. Evans,et al.  Failure mechanisms associated with the thermally grown oxide in plasma-sprayed thermal barrier coatings , 2000 .

[23]  A. Alavi,et al.  Equilibrium and adhesion of Nb/sapphire: The effect of oxygen partial pressure , 2000, cond-mat/0001159.

[24]  H. Grabke Oxidation of NiAl and FeAl , 1999 .

[25]  B. Meyer,et al.  Atomic defects in the ordered compound B 2 -NiAl: A combination of ab initio electron theory and statistical mechanics , 1999 .

[26]  Misfit effects in adhesion calculations , 1998 .

[27]  M. Finnis,et al.  Point defects and chemical potentials in ordered alloys , 1998 .

[28]  J. Silvain,et al.  Wettability, reactivity and stress relaxation of an NiAl(Ti)/Al2O3 composite , 1998 .

[29]  S. Nepijko,et al.  Transmission electron microscopic investigation of an ordered Al2O3 film on NiAl(110) , 1997 .

[30]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[31]  M. Finnis,et al.  The theory of metal - ceramic interfaces , 1996 .

[32]  H. Müllejans,et al.  Chemistry and bonding investigations of interfaces , 1996 .

[33]  F. Ernst Metal-oxide interfaces , 1995 .

[34]  H. Grabke,et al.  Segregation beneath oxide scales , 1995 .

[35]  Hans-Joachim Freund,et al.  Structure and defects of an ordered alumina film on NiAl(110) , 1994 .

[36]  Georg Kresse,et al.  Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements , 1994 .

[37]  J. Boettger,et al.  Nonconvergence of surface energies obtained from thin-film calculations. , 1994, Physical review. B, Condensed matter.

[38]  H. Okamoto Al-Ni (aluminum-nickel) , 1993 .

[39]  D. Miracle Overview No. 104 The physical and mechanical properties of NiAl , 1993 .

[40]  Jackson,et al.  Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. , 1992, Physical review. B, Condensed matter.

[41]  M. Wuttig,et al.  Formation of a well-ordered aluminium oxide overlayer by oxidation of NiAl(110) , 1991 .

[42]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[43]  J. Smialek,et al.  Transient oxidation of Single-Crystal β-NiAl , 1989 .

[44]  H. Ipser,et al.  Thermodynamics of intermetallic B2-phases. A generalized model , 1989 .

[45]  Bauer,et al.  Structure and growth of crystalline superlattices: From monolayer to superlattice. , 1986, Physical review. B, Condensed matter.

[46]  R. H. Wagoner,et al.  Summary Abstract: Surface energies in d‐band metals , 1984 .

[47]  J. H. Merwe Analytical selection of ideal epitaxial configurations and some speculations on the occurrence of epitaxy II. Epitaxy of (111) f.c.c. overlayers on (110) b.c.c. substrates , 1982 .

[48]  L. Bruce,et al.  Geometric factors in f.c.c. and b.c.c. metal-on-metal epitaxy III. The alignments of (111) f.c.c.-(110) b.c.c. epitaxed metal pairs , 1978 .

[49]  Albert James Bradley,et al.  An X-Ray Analysis of the Nickel-Aluminium System , 1937 .