Extended formulations for convex envelopes

In this work we derive explicit descriptions for the convex envelope of nonlinear functions that are component-wise concave on a subset of the variables and convex on the other variables. These functions account for more than 30 % of all nonlinearities in common benchmark libraries. To overcome the combinatorial difficulties in deriving the convex envelope description given by the component-wise concave part of the functions, we consider an extended formulation of the convex envelope based on the Reformulation–Linearization-Technique introduced by Sherali and Adams (SIAM J Discret Math 3(3):411–430, 1990). Computational results are reported showing that the extended formulation strategy is a useful tool in global optimization.

[1]  Carlile Lavor,et al.  On generating Instances for the Molecular Distance Geometry Problem , 2006 .

[2]  Garth P. McCormick,et al.  Computability of global solutions to factorable nonconvex programs: Part I — Convex underestimating problems , 1976, Math. Program..

[3]  Hanif D. Sherali,et al.  Reduced RLT representations for nonconvex polynomial programming problems , 2012, J. Glob. Optim..

[4]  Nikolaos V. Sahinidis,et al.  Convex extensions and envelopes of lower semi-continuous functions , 2002, Math. Program..

[5]  Robert Weismantel,et al.  The Convex Envelope of (n--1)-Convex Functions , 2008, SIAM J. Optim..

[6]  Fabio Tardella,et al.  Existence and sum decomposition of vertex polyhedral convex envelopes , 2008, Optim. Lett..

[7]  Nikolaos V. Sahinidis,et al.  Multiterm polyhedral relaxations for nonconvex, quadratically constrained quadratic programs , 2009, Optim. Methods Softw..

[8]  Hanif D. Sherali,et al.  Enhancing RLT-based relaxations for polynomial programming problems via a new class of v-semidefinite cuts , 2012, Comput. Optim. Appl..

[9]  Hanif D. Sherali,et al.  A global optimization algorithm for polynomial programming problems using a Reformulation-Linearization Technique , 1992, J. Glob. Optim..

[10]  Christodoulos A. Floudas,et al.  Convex envelopes for edge-concave functions , 2005, Math. Program..

[11]  Warren P. Adams,et al.  A hierarchy of relaxation between the continuous and convex hull representations , 1990 .

[12]  Aimo A. Törn,et al.  Global Optimization , 1999, Science.

[13]  Monique Laurent,et al.  A Comparison of the Sherali-Adams, Lovász-Schrijver, and Lasserre Relaxations for 0-1 Programming , 2003, Math. Oper. Res..

[14]  Jean-Philippe P. Richard,et al.  KRANNERT GRADUATE SCHOOL OF MANAGEMENT , 2010 .

[15]  Nikolaos V. Sahinidis,et al.  Semidefinite Relaxations of Fractional Programs via Novel Convexification Techniques , 2001, J. Glob. Optim..

[16]  Nikolaos V. Sahinidis,et al.  Convex envelopes of products of convex and component-wise concave functions , 2012, J. Glob. Optim..

[17]  Hanif D. Sherali,et al.  CONVEX ENVELOPES OF MULTILINEAR FUNCTIONS OVER A UNIT HYPERCUBE AND OVER SPECIAL DISCRETE SETS , 1997 .

[18]  Hanif D. Sherali,et al.  A Hierarchy of Relaxations and Convex Hull Characterizations for Mixed-integer Zero-one Programming Problems , 1994, Discret. Appl. Math..

[19]  David P. Dobkin,et al.  The quickhull algorithm for convex hulls , 1996, TOMS.

[20]  Hanif D. Sherali,et al.  A Hierarchy of Relaxations Leading to the Convex Hull Representation for General Discrete Optimization Problems , 2005, Ann. Oper. Res..

[21]  Leo Liberti,et al.  Branching and bounds tighteningtechniques for non-convex MINLP , 2009, Optim. Methods Softw..

[22]  Nikolaos V. Sahinidis,et al.  Global optimization of mixed-integer nonlinear programs: A theoretical and computational study , 2004, Math. Program..

[23]  N. Maculan,et al.  Global optimization : from theory to implementation , 2006 .

[24]  Adam N. Letchford,et al.  On Nonconvex Quadratic Programming with Box Constraints , 2009, SIAM J. Optim..

[25]  Sonia Cafieri,et al.  On convex relaxations of quadrilinear terms , 2010, J. Glob. Optim..

[26]  Samuel Burer,et al.  Computable representations for convex hulls of low-dimensional quadratic forms , 2010, Math. Program..

[27]  Michael R. Bussieck,et al.  MINLPLib - A Collection of Test Models for Mixed-Integer Nonlinear Programming , 2003, INFORMS J. Comput..

[28]  Nikolaos V. Sahinidis,et al.  Convex envelopes generated from finitely many compact convex sets , 2013, Math. Program..

[29]  Nikolaos V. Sahinidis,et al.  A polyhedral branch-and-cut approach to global optimization , 2005, Math. Program..

[30]  Tobias Achterberg,et al.  SCIP: solving constraint integer programs , 2009, Math. Program. Comput..

[31]  F. Tardella On the existence of polyhedral convex envelopes , 2004 .

[32]  Bernd Sturmfels,et al.  The hyperdeterminant and triangulations of the 4-cube , 2006, Math. Comput..