Mimicking titration experiments with MD simulations: A protocol for the investigation of pH-dependent effects on proteins

[1]  Bernard R Brooks,et al.  Enhancing constant-pH simulation in explicit solvent with a two-dimensional replica exchange method. , 2015, Journal of chemical theory and computation.

[2]  Alex Dickson,et al.  Multiscale modeling of a conditionally disordered pH-sensing chaperone. , 2015, Journal of molecular biology.

[3]  Jason M. Swails,et al.  Constant pH Replica Exchange Molecular Dynamics in Explicit Solvent Using Discrete Protonation States: Implementation, Testing, and Validation , 2014, Journal of chemical theory and computation.

[4]  K. Crowhurst,et al.  NMR‐monitored titration of acid‐stress bacterial chaperone HdeA reveals that Asp and Glu charge neutralization produces a loosened dimer structure in preparation for protein unfolding and chaperone activation , 2014, Protein science : a publication of the Protein Society.

[5]  Daniel R Roe,et al.  PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data. , 2013, Journal of chemical theory and computation.

[6]  V. Teixeira,et al.  Conformational study of GSH and GSSG using constant-pH molecular dynamics simulations. , 2013, The journal of physical chemistry. B.

[7]  Qingchuan Zheng,et al.  Constant pH molecular dynamics (CpHMD) and molecular docking studies of CquiOBP1 pH-induced ligand releasing mechanism , 2013, Journal of Molecular Modeling.

[8]  A. Roitberg,et al.  pH-replica exchange molecular dynamics in proteins using a discrete protonation method. , 2012, The journal of physical chemistry. B.

[9]  Weizhe Hong,et al.  Chaperone-dependent mechanisms for acid resistance in enteric bacteria. , 2012, Trends in microbiology.

[10]  Patrick G. Blachly,et al.  Measuring the successes and deficiencies of constant pH molecular dynamics: A blind prediction study , 2011, Proteins.

[11]  Jan H. Jensen,et al.  Improved Treatment of Ligands and Coupling Effects in Empirical Calculation and Rationalization of pKa Values. , 2011, Journal of chemical theory and computation.

[12]  H. Grubmüller,et al.  Constant pH Molecular Dynamics in Explicit Solvent with λ-Dynamics , 2011, Journal of chemical theory and computation.

[13]  Damien Farrell,et al.  Remeasuring HEWL pKa values by NMR spectroscopy: Methods, analysis, accuracy, and implications for theoretical pKa calculations , 2011, Proteins.

[14]  Jan H. Jensen,et al.  PROPKA3: Consistent Treatment of Internal and Surface Residues in Empirical pKa Predictions. , 2011, Journal of chemical theory and computation.

[15]  Adrian E Roitberg,et al.  Constant pH replica exchange molecular dynamics in biomolecules using a discrete protonation model. , 2010, Journal of chemical theory and computation.

[16]  C. Castañeda,et al.  Molecular determinants of the pKa values of Asp and Glu residues in staphylococcal nuclease , 2009, Proteins.

[17]  V. Hornak,et al.  Comparison of multiple Amber force fields and development of improved protein backbone parameters , 2006, Proteins.

[18]  Charles L Brooks,et al.  Toward the accurate first-principles prediction of ionization equilibria in proteins. , 2006, Biochemistry.

[19]  S. Roche,et al.  Crystal Structure of the Low-pH Form of the Vesicular Stomatitis Virus Glycoprotein G , 2006, Science.

[20]  Weizhe Hong,et al.  Periplasmic Protein HdeA Exhibits Chaperone-like Activity Exclusively within Stomach pH Range by Transforming into Disordered Conformation* , 2005, Journal of Biological Chemistry.

[21]  C. Brooks,et al.  Constant pH molecular dynamics with proton tautomerism. , 2005, Biophysical journal.

[22]  John Mongan,et al.  Biomolecular simulations at constant pH. , 2005, Current opinion in structural biology.

[23]  D. Case,et al.  Constant pH molecular dynamics in generalized Born implicit solvent , 2004, J. Comput. Chem..

[24]  C. Brooks,et al.  Constant‐pH molecular dynamics using continuous titration coordinates , 2004, Proteins.

[25]  D. Luu,et al.  Cytosolic pH regulates root water transport during anoxic stress through gating of aquaporins , 2003, Nature.

[26]  C. Soares,et al.  Constant-pH molecular dynamics using stochastic titration , 2002 .

[27]  Eaton E Lattman,et al.  Experimental pK(a) values of buried residues: analysis with continuum methods and role of water penetration. , 2002, Biophysical journal.

[28]  D. Case,et al.  A novel view of pH titration in biomolecules. , 2001, Biochemistry.

[29]  V. Ananthanarayanan,et al.  Structure-function studies on hsp47: pH-dependent inhibition of collagen fibril formation in vitro. , 2000, The Biochemical journal.

[30]  K. Gajiwala,et al.  HDEA, a periplasmic protein that supports acid resistance in pathogenic enteric bacteria. , 2000, Journal of molecular biology.

[31]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[32]  Fan Yang,et al.  Crystal structure of Escherichia coli HdeA , 1998, Nature Structural Biology.

[33]  S. Petersen,et al.  Simulation of protein conformational freedom as a function of pH: constant‐pH molecular dynamics using implicit titration , 1997, Proteins.

[34]  Rebecca C. Wade,et al.  Improving the Continuum Dielectric Approach to Calculating pKas of Ionizable Groups in Proteins , 1996 .

[35]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[36]  P E Wright,et al.  Electrostatic calculations of side-chain pK(a) values in myoglobin and comparison with NMR data for histidines. , 1993, Biochemistry.

[37]  C. Pace,et al.  Contribution of histidine residues to the conformational stability of ribonuclease T1 and mutant Glu-58----Ala. , 1990, Biochemistry.

[38]  Peter J. Artymiuk,et al.  The Structures of the Monoclinic and Orthorhombic Forms of Hen Egg-White Lysozyme at 6 Angstroms Resolution , 1981 .

[39]  A Helenius,et al.  pH-dependent fusion between the Semliki Forest virus membrane and liposomes. , 1980, Proceedings of the National Academy of Sciences of the United States of America.