Subcovers and Codes on a Class of Trace-Defining Curves

In this paper, we construct some class of explicit subcovers of the curve <inline-formula> <tex-math notation="LaTeX">$\mathcal {X}_{n,r}$ </tex-math></inline-formula> defined over <inline-formula> <tex-math notation="LaTeX">$\mathbb {F}_{q^{n}}$ </tex-math></inline-formula> by affine equation <inline-formula> <tex-math notation="LaTeX">$y^{q^{n-1}}+\cdots +y^{q}+y=x^{q^{n-r}+1}-x^{q^{n}+q^{n-r}}$ </tex-math></inline-formula>. These subcovers are defined over <inline-formula> <tex-math notation="LaTeX">$\mathbb {F}_{q^{n}}$ </tex-math></inline-formula> by affine equation <inline-formula> <tex-math notation="LaTeX">$g_{s}(y)=x^{q^{n}+q^{n-r}}-x^{q^{n-r}+1}$ </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">$g_{s}(y)$ </tex-math></inline-formula> is a <inline-formula> <tex-math notation="LaTeX">$q$ </tex-math></inline-formula>-polynomial of degree <inline-formula> <tex-math notation="LaTeX">$q^{s}$ </tex-math></inline-formula>. The Weierstrass semigroup <inline-formula> <tex-math notation="LaTeX">$H(P_\infty)$ </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">$P_\infty $ </tex-math></inline-formula> is the only point at infinity on such subcovers, is determined for <inline-formula> <tex-math notation="LaTeX">$1 \leq s \leq 2r-n+1$ </tex-math></inline-formula>, and the corresponding one-point AG codes are investigated. Codes establishing new records on the parameters with respect to the previously known ones are discovered, and 108 improvements on MinT tables are obtained.

[1]  Gretchen L. Matthews Weierstrass Pairs and Minimum Distance of Goppa Codes , 2001, Des. Codes Cryptogr..

[2]  Gretchen L. Matthews Codes from the Suzuki function field , 2004, IEEE Transactions on Information Theory.

[3]  Alonso Sepúlveda,et al.  Weierstrass semigroup and codes over the curve yq + y = xqr + 1 , 2014, Adv. Math. Commun..

[4]  John J. Cannon,et al.  The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..

[5]  Carlos Munuera,et al.  On the order bounds for one-point AG codes , 2010, Adv. Math. Commun..

[6]  Carlos Munuera,et al.  Algebraic Geometry Codes from Castle Curves , 2008, ICMCTA.

[7]  Ricardo Conceição,et al.  A new family of Castle and Frobenius nonclassical curves , 2018 .

[8]  P. Vijay Kumar,et al.  Algebraic-geometric codes over Z/sub 4/ , 1997, Proceedings of IEEE International Symposium on Information Theory.

[9]  J. H. van Lint,et al.  Introduction to Coding Theory , 1982 .

[10]  Alonso Sepúlveda,et al.  Weierstrass semigroup and automorphism group of the curves Xn, r , 2015, Finite Fields Their Appl..

[11]  Massimo Giulietti,et al.  One-Point AG Codes on the GK Maximal Curves , 2010, IEEE Transactions on Information Theory.

[12]  H. Stichtenoth,et al.  Elementary Abelianp-extensions of algebraic function fields , 1991 .

[13]  S. G. Vladut,et al.  Algebraic-Geometric Codes , 1991 .

[14]  Ian F. Blake,et al.  Algebraic-Geometry Codes , 1998, IEEE Trans. Inf. Theory.

[15]  Harald Niederreiter,et al.  Introduction to finite fields and their applications: Preface , 1994 .

[16]  V. Deolalikar Determining irreducibility and ramification groups for an additive extension of the rational function field , 2002 .

[17]  Ruud Pellikaan,et al.  The minimum distance of codes in an array coming from telescopic semigroups , 1995, IEEE Trans. Inf. Theory.

[18]  Olav Geil,et al.  Evaluation codes from order domain theory , 2008, Finite Fields Their Appl..

[19]  V. D. Goppa Codes on Algebraic Curves , 1981 .

[20]  Carlos Munuera,et al.  Two-Point Codes on Norm-Trace Curves , 2008, ICMCTA.