Relative performance of several passive and active methods for controlling two-dimensional turbulent separated flow associated with a curved backward-facing ramp were investigated at low speeds. Surface static pressure measurement and oil flow visualization results indicate that submerged vortex generators, vortex generator jets, elongated arches at +-alpha, and large-eddy breakup devices at +-alpha placed near the baseline separation location reduce flow separation and increase pressure recovery. Spanwise cylinders reduce flow separation but decrease pressure recovery downstream. Arches with alpha = 0 deg, Helmholtz resonators, and Viets' fluidic flappers examined so far have no significant effect in reducing separation. Wall cooling computation indicates that separation delay on a partially cooled ramp is nearly the same as on a fully-cooled ramp while minimizing the frictional drag increase associated with the wall cooling process.