Quantifying the benefit of a proteome reserve in fluctuating environments

[1]  T. Hwa,et al.  Reduction of translating ribosomes enables Escherichia coli to maintain elongation rates during slow growth , 2016, Nature Microbiology.

[2]  John T. Sauls,et al.  Effect of flow and peristaltic mixing on bacterial growth in a gut-like channel , 2016, Proceedings of the National Academy of Sciences.

[3]  Matteo Mori,et al.  Constrained Allocation Flux Balance Analysis , 2016, PLoS Comput. Biol..

[4]  R. Aebersold,et al.  The quantitative and condition-dependent Escherichia coli proteome , 2015, Nature Biotechnology.

[5]  V. Fromion,et al.  Quantitative prediction of genome-wide resource allocation in bacteria. , 2015, Metabolic engineering.

[6]  T. Hwa,et al.  Overflow metabolism in E. coli results from efficient proteome allocation , 2015, Nature.

[7]  T. Hwa,et al.  Inflating bacterial cells by increased protein synthesis , 2015, Molecular systems biology.

[8]  K. Valgepea,et al.  Proteome reallocation in Escherichia coli with increasing specific growth rate. , 2015, Molecular bioSystems.

[9]  P. Swain,et al.  Mechanistic links between cellular trade-offs, gene expression, and growth , 2015, Proceedings of the National Academy of Sciences.

[10]  David W. Erickson,et al.  Quantitative proteomic analysis reveals a simple strategy of global resource allocation in bacteria , 2015, Molecular systems biology.

[11]  K. Dill,et al.  Bacterial growth laws reflect the evolutionary importance of energy efficiency , 2014, Proceedings of the National Academy of Sciences.

[12]  T. Hwa,et al.  Emergence of robust growth laws from optimal regulation of ribosome synthesis , 2014, Molecular systems biology.

[13]  Edward J. O'Brien,et al.  Genome-scale models of metabolism and gene expression extend and refine growth phenotype prediction , 2013, Molecular systems biology.

[14]  T. Hwa,et al.  Molecular crowding limits translation and cell growth , 2013, Proceedings of the National Academy of Sciences.

[15]  Hulda S. Haraldsdóttir,et al.  Steady-State Metabolite Concentrations Reflect a Balance between Maximizing Enzyme Efficiency and Minimizing Total Metabolite Load , 2013, PloS one.

[16]  T. Hwa,et al.  Coordination of bacterial proteome with metabolism by cyclic AMP signalling , 2013, Nature.

[17]  Måns Ehrenberg,et al.  Medium-dependent control of the bacterial growth rate. , 2013, Biochimie.

[18]  Jo Maertens,et al.  Changes in substrate availability in Escherichia coli lead to rapid metabolite, flux and growth rate responses. , 2013, Metabolic Engineering.

[19]  U. Sauer,et al.  Multidimensional Optimality of Microbial Metabolism , 2012, Science.

[20]  V. Fromion,et al.  Bacterial growth rate reflects a bottleneck in resource allocation. , 2011, Biochimica et biophysica acta.

[21]  Andreas Wagner,et al.  Environmental versatility promotes modularity in genome-scale metabolic networks , 2011, BMC Systems Biology.

[22]  Terence Hwa,et al.  Bacterial growth laws and their applications. , 2011, Current opinion in biotechnology.

[23]  Radhakrishnan Mahadevan,et al.  Economics of membrane occupancy and respiro-fermentation , 2011, Molecular systems biology.

[24]  T. Hwa,et al.  Interdependence of Cell Growth and Gene Expression: Origins and Consequences , 2010, Science.

[25]  D. Weuster‐Botz,et al.  Rapid media transition: An experimental approach for steady state analysis of metabolic pathways , 2009, Biotechnology progress.

[26]  B. Teusink,et al.  Shifts in growth strategies reflect tradeoffs in cellular economics , 2009, Molecular systems biology.

[27]  Anat Kreimer,et al.  The evolution of modularity in bacterial metabolic networks , 2008, Proceedings of the National Academy of Sciences.

[28]  U. Alon,et al.  Environmental variability and modularity of bacterial metabolic networks , 2007, BMC Evolutionary Biology.

[29]  M. A. de Menezes,et al.  Intracellular crowding defines the mode and sequence of substrate uptake by Escherichia coli and constrains its metabolic activity , 2007, Proceedings of the National Academy of Sciences.

[30]  Richard E. Lenski,et al.  Parallel Changes in Global Protein Profiles During Long-Term Experimental Evolution in Escherichia coli , 2006, Genetics.

[31]  R. Gourse,et al.  rRNA transcription in Escherichia coli. , 2004, Annual review of genetics.

[32]  Oleg Paliy,et al.  Physiological Studies of Escherichia coli Strain MG1655: Growth Defects and Apparent Cross-Regulation of Gene Expression , 2003, Journal of bacteriology.

[33]  R. Lenski,et al.  Parallel changes in gene expression after 20,000 generations of evolution in Escherichia coli , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Richard E. Lenski,et al.  Mechanisms Causing Rapid and Parallel Losses of Ribose Catabolism in Evolving Populations of Escherichia coli B , 2001, Journal of bacteriology.

[35]  T. Schmidt,et al.  rRNA Operon Copy Number Reflects Ecological Strategies of Bacteria , 2000, Applied and Environmental Microbiology.

[36]  S. Kustu,et al.  The accumulation of glutamate is necessary for optimal growth of Salmonella typhimurium in media of high osmolality but not induction of the proU operon , 1994, Journal of bacteriology.

[37]  Jens Nielsen,et al.  A simple and reliable method for the determination of cellular RNA content , 1991 .

[38]  S. Pedersen Escherichia coli ribosomes translate in vivo with variable rate. , 1984, The EMBO journal.

[39]  R. Gourse,et al.  Regulation of the synthesis of ribosomes and ribosomal components. , 1984, Annual review of biochemistry.

[40]  Michael A. Savageau,et al.  Escherichia coli Habitats, Cell Types, and Molecular Mechanisms of Gene Control , 1983, The American Naturalist.

[41]  A. L. Koch The inefficiency of ribosomes functioning in Escherichia coli growing at moderate rates. , 1980, Journal of general microbiology.

[42]  O. Maaløe,et al.  Regulation of the Protein-Synthesizing Machinery—Ribosomes, tRNA, Factors, and So On , 1979 .

[43]  H. Bremer,et al.  Establishment of exponential growth after a nutritional shift-up in Escherichia coli B/r: accumulation of deoxyribonucleic acid, ribonucleic acid, and protein , 1977, Journal of bacteriology.

[44]  H. Bremer,et al.  Polypeptide-chain-elongation rate in Escherichia coli B/r as a function of growth rate. , 1976, The Biochemical journal.

[45]  P. Dennis,et al.  Transition period following a nutritional shift-up in the bacterium Escherichia coli B/r: stable RNA and protein synthesis. , 1975, Journal of theoretical biology.

[46]  P. Dennis,et al.  Macromolecular Composition During Steady-State Growth of Escherichia coli B/r , 1974, Journal of bacteriology.

[47]  P. Dennis,et al.  Differential rate of ribosomal protein synthesis in Escherichia coli B/r. , 1974, Journal of molecular biology.

[48]  S F Phillips,et al.  The contribution of the colon to electrolyte and water conservation in man. , 1973, The Journal of laboratory and clinical medicine.

[49]  A. L. Koch,et al.  In vivo assay of protein synthesizing capacity of Escherichia coli from slowly growing chemostat cultures. , 1971, Journal of molecular biology.

[50]  A. L. Koch,et al.  The adaptive responses of Escherichia coli to a feast and famine existence. , 1971, Advances in microbial physiology.

[51]  A. L. Koch,et al.  Overall controls on the biosynthesis of ribosomes in growing bacteria. , 1970, Journal of theoretical biology.

[52]  R. Schleif Control of production of ribosomal protein. , 1967, Journal of molecular biology.

[53]  O. Maaløe,et al.  Dependency on medium and temperature of cell size and chemical composition during balanced grown of Salmonella typhimurium. , 1958, Journal of general microbiology.

[54]  O. Maaløe,et al.  The transition between different physiological states during balanced growth of Salmonella typhimurium. , 1958, Journal of general microbiology.