A regularization of the Burgers equation using a filtered convective velocity

This paper examines the properties of a regularization of the Burgers equation in one and multiple dimensions using a filtered convective velocity, which we have dubbed as the convectively filtered Burgers (CFB) equation. A physical motivation behind the filtering technique is presented. An existence and uniqueness theorem for multiple dimensions and a general class of filters is proven. Multiple invariants of motion are found for the CFB equation which are shown to be shared with the viscous and inviscid Burgers equations. Traveling wave solutions are found for a general class of filters and are shown to converge to weak solutions of the inviscid Burgers equation with the correct wave speed. Numerical simulations are conducted in 1D and 2D cases where the shock behavior, shock thickness and kinetic energy decay are examined. Energy spectra are also examined and are shown to be related to the smoothness of the solutions. This approach is presented with the hope of being extended to shock regularization of compressible Euler equations.

[1]  Jean Leray,et al.  Sur le mouvement d'un liquide visqueux emplissant l'espace , 1934 .

[2]  M. Lesieur,et al.  New Trends in Large-Eddy Simulations of Turbulence , 1996 .

[3]  Darryl D. Holm,et al.  Wave Structure and Nonlinear Balances in a Family of Evolutionary PDEs , 2002, SIAM J. Appl. Dyn. Syst..

[4]  R. Aris Vectors, Tensors and the Basic Equations of Fluid Mechanics , 1962 .

[5]  Hailiang Liu,et al.  Critical Thresholds in a Convolution Model for Nonlinear Conservation Laws , 2001, SIAM J. Math. Anal..

[6]  Darryl D. Holm,et al.  Alpha-modeling Strategy for LES of Turbulent Mixing , 2002, nlin/0202012.

[7]  John K. Hunter,et al.  Applied Analysis , 2001 .

[8]  S. Kružkov FIRST ORDER QUASILINEAR EQUATIONS IN SEVERAL INDEPENDENT VARIABLES , 1970 .

[9]  Corrado Lattanzio,et al.  Global well-posedness and relaxation limits of a model for radiating gas , 2003 .

[10]  C. David Levermore,et al.  The small dispersion limit of the Korteweg‐de Vries equation. III , 1983 .

[11]  Jerrold E. Marsden,et al.  Shock Regularization for the Burgers Equation , 2006 .

[12]  Darryl D. Holm,et al.  Direct numerical simulations of the Navier–Stokes alpha model , 1999, Physica D: Nonlinear Phenomena.

[13]  Kamran Mohseni,et al.  A dynamic model for the Lagrangian-averaged Navier-Stokes-α equations , 2005 .

[14]  G. Whitham,et al.  Linear and Nonlinear Waves , 1976 .

[15]  Darryl D. Holm,et al.  Commutator errors in large-eddy simulation , 2002, Journal of Physics A: Mathematical and General.

[16]  Nikolaus A. Adams,et al.  A Subgrid-Scale Deconvolution Approach for Shock Capturing , 2002 .

[17]  Philippe G. LeFloch,et al.  Zero Diffusion-Dispersion Limits for Scalar Conservation Laws , 2007, SIAM J. Math. Anal..

[18]  P. Moin,et al.  A dynamic subgrid‐scale eddy viscosity model , 1990 .

[19]  Jerrold E. Marsden,et al.  EULER-POINCARE MODELS OF IDEAL FLUIDS WITH NONLINEAR DISPERSION , 1998 .

[20]  A Regularization of Burgers Equation using a Filtered Convective Velocity , 2007 .

[21]  T. Kakutani,et al.  Weak Ion-Acoustic Shock Waves , 1970 .

[22]  E. Tadmor Burgers' Equation with Vanishing Hyper-Viscosity , 2004 .

[23]  Thomas J. R. Hughes,et al.  Large eddy simulation of turbulent channel flows by the variational multiscale method , 2001 .

[24]  L. M. Albright Vectors , 2003, Current protocols in molecular biology.

[25]  Camillo De Lellis,et al.  Minimal entropy conditions for Burgers equation , 2004 .

[26]  Jerrold E. Marsden,et al.  Numerical simulations of the Lagrangian averaged Navier-Stokes equations for homogeneous isotropic turbulence , 2003 .

[27]  Kamran Mohseni,et al.  On the Convergence of the Convectively Filtered Burgers Equation to the Entropy Solution of the Inviscid Burgers Equation , 2008, Multiscale Model. Simul..

[28]  M. R. Rahimi Tabar,et al.  Three-dimensional forced Burgers turbulence supplemented with a continuity equation. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  E. Aurell,et al.  On the decay of Burgers turbulence , 1997, Journal of Fluid Mechanics.

[30]  Assad A. Oberai,et al.  A dynamic multiscale viscosity method for the spectral approximation of conservation laws , 2006 .

[31]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[32]  Jerrold E. Marsden,et al.  Lagrangian Averaging for Compressible Fluids , 2005, Multiscale Model. Simul..

[33]  Robert D. Moser,et al.  Optimal large-eddy simulation of forced Burgers equation , 2002 .

[34]  P. Lax Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves , 1987 .

[35]  Razvan C. Fetecau,et al.  A Hamiltonian Regularization of the Burgers Equation , 2006, J. Nonlinear Sci..

[36]  R. Kraichnan Lagrangian‐History Statistical Theory for Burgers' Equation , 1968 .

[37]  Chi-Wang Shu,et al.  Total variation diminishing Runge-Kutta schemes , 1998, Math. Comput..

[38]  K J Whiteman,et al.  Linear and Nonlinear Waves , 1975 .

[39]  H. Jonker,et al.  Incompressibility of the Leray-α model for wall-bounded flows , 2006 .

[40]  Thomas J. R. Hughes,et al.  The multiscale formulation of large eddy simulation: Decay of homogeneous isotropic turbulence , 2001 .

[41]  E. Tadmor,et al.  The regularized Chapman-Enskog expansion for scalar conservation laws , 1992 .

[42]  J. Cole On a quasi-linear parabolic equation occurring in aerodynamics , 1951 .

[43]  Darryl D. Holm,et al.  On a Leray–α model of turbulence , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[44]  M. Hoefer Dispersive Shock Waves in Bose-Einstein Condensates and Nonlinear Nano-oscillators in Ferromagnetic Thin Films , 2006 .

[45]  A. Gurevich,et al.  Nonstationary structure of a collisionless shock wave , 1973 .

[46]  Guillermo Rein,et al.  44th AIAA Aerospace Sciences Meeting and Exhibit , 2006 .

[47]  J. Burgers A mathematical model illustrating the theory of turbulence , 1948 .

[48]  E. Hopf The partial differential equation ut + uux = μxx , 1950 .

[49]  R. Kraichnan,et al.  Statistics of decaying Burgers turbulence , 1993 .

[50]  Alexei Ilyin,et al.  A modified-Leray-α subgrid scale model of turbulence , 2006 .

[51]  Darryl D. Holm,et al.  The Three Dimensional Viscous Camassa–Holm Equations, and Their Relation to the Navier–Stokes Equations and Turbulence Theory , 2001, nlin/0103039.

[52]  Darryl D. Holm,et al.  The Navier–Stokes-alpha model of fluid turbulence , 2001, nlin/0103037.

[53]  J. Marsden,et al.  Numerical Simulations of the Lagrangian Averaged Navier-Stokes (Lans-α) Equations for Forced Homogeneous Isotropic Turbulence , 2001 .