A regularization of the Burgers equation using a filtered convective velocity
暂无分享,去创建一个
[1] Jean Leray,et al. Sur le mouvement d'un liquide visqueux emplissant l'espace , 1934 .
[2] M. Lesieur,et al. New Trends in Large-Eddy Simulations of Turbulence , 1996 .
[3] Darryl D. Holm,et al. Wave Structure and Nonlinear Balances in a Family of Evolutionary PDEs , 2002, SIAM J. Appl. Dyn. Syst..
[4] R. Aris. Vectors, Tensors and the Basic Equations of Fluid Mechanics , 1962 .
[5] Hailiang Liu,et al. Critical Thresholds in a Convolution Model for Nonlinear Conservation Laws , 2001, SIAM J. Math. Anal..
[6] Darryl D. Holm,et al. Alpha-modeling Strategy for LES of Turbulent Mixing , 2002, nlin/0202012.
[7] John K. Hunter,et al. Applied Analysis , 2001 .
[8] S. Kružkov. FIRST ORDER QUASILINEAR EQUATIONS IN SEVERAL INDEPENDENT VARIABLES , 1970 .
[9] Corrado Lattanzio,et al. Global well-posedness and relaxation limits of a model for radiating gas , 2003 .
[10] C. David Levermore,et al. The small dispersion limit of the Korteweg‐de Vries equation. III , 1983 .
[11] Jerrold E. Marsden,et al. Shock Regularization for the Burgers Equation , 2006 .
[12] Darryl D. Holm,et al. Direct numerical simulations of the Navier–Stokes alpha model , 1999, Physica D: Nonlinear Phenomena.
[13] Kamran Mohseni,et al. A dynamic model for the Lagrangian-averaged Navier-Stokes-α equations , 2005 .
[14] G. Whitham,et al. Linear and Nonlinear Waves , 1976 .
[15] Darryl D. Holm,et al. Commutator errors in large-eddy simulation , 2002, Journal of Physics A: Mathematical and General.
[16] Nikolaus A. Adams,et al. A Subgrid-Scale Deconvolution Approach for Shock Capturing , 2002 .
[17] Philippe G. LeFloch,et al. Zero Diffusion-Dispersion Limits for Scalar Conservation Laws , 2007, SIAM J. Math. Anal..
[18] P. Moin,et al. A dynamic subgrid‐scale eddy viscosity model , 1990 .
[19] Jerrold E. Marsden,et al. EULER-POINCARE MODELS OF IDEAL FLUIDS WITH NONLINEAR DISPERSION , 1998 .
[20] A Regularization of Burgers Equation using a Filtered Convective Velocity , 2007 .
[21] T. Kakutani,et al. Weak Ion-Acoustic Shock Waves , 1970 .
[22] E. Tadmor. Burgers' Equation with Vanishing Hyper-Viscosity , 2004 .
[23] Thomas J. R. Hughes,et al. Large eddy simulation of turbulent channel flows by the variational multiscale method , 2001 .
[24] L. M. Albright. Vectors , 2003, Current protocols in molecular biology.
[25] Camillo De Lellis,et al. Minimal entropy conditions for Burgers equation , 2004 .
[26] Jerrold E. Marsden,et al. Numerical simulations of the Lagrangian averaged Navier-Stokes equations for homogeneous isotropic turbulence , 2003 .
[27] Kamran Mohseni,et al. On the Convergence of the Convectively Filtered Burgers Equation to the Entropy Solution of the Inviscid Burgers Equation , 2008, Multiscale Model. Simul..
[28] M. R. Rahimi Tabar,et al. Three-dimensional forced Burgers turbulence supplemented with a continuity equation. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.
[29] E. Aurell,et al. On the decay of Burgers turbulence , 1997, Journal of Fluid Mechanics.
[30] Assad A. Oberai,et al. A dynamic multiscale viscosity method for the spectral approximation of conservation laws , 2006 .
[31] W. D. Evans,et al. PARTIAL DIFFERENTIAL EQUATIONS , 1941 .
[32] Jerrold E. Marsden,et al. Lagrangian Averaging for Compressible Fluids , 2005, Multiscale Model. Simul..
[33] Robert D. Moser,et al. Optimal large-eddy simulation of forced Burgers equation , 2002 .
[34] P. Lax. Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves , 1987 .
[35] Razvan C. Fetecau,et al. A Hamiltonian Regularization of the Burgers Equation , 2006, J. Nonlinear Sci..
[36] R. Kraichnan. Lagrangian‐History Statistical Theory for Burgers' Equation , 1968 .
[37] Chi-Wang Shu,et al. Total variation diminishing Runge-Kutta schemes , 1998, Math. Comput..
[38] K J Whiteman,et al. Linear and Nonlinear Waves , 1975 .
[39] H. Jonker,et al. Incompressibility of the Leray-α model for wall-bounded flows , 2006 .
[40] Thomas J. R. Hughes,et al. The multiscale formulation of large eddy simulation: Decay of homogeneous isotropic turbulence , 2001 .
[41] E. Tadmor,et al. The regularized Chapman-Enskog expansion for scalar conservation laws , 1992 .
[42] J. Cole. On a quasi-linear parabolic equation occurring in aerodynamics , 1951 .
[43] Darryl D. Holm,et al. On a Leray–α model of turbulence , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[44] M. Hoefer. Dispersive Shock Waves in Bose-Einstein Condensates and Nonlinear Nano-oscillators in Ferromagnetic Thin Films , 2006 .
[45] A. Gurevich,et al. Nonstationary structure of a collisionless shock wave , 1973 .
[46] Guillermo Rein,et al. 44th AIAA Aerospace Sciences Meeting and Exhibit , 2006 .
[47] J. Burgers. A mathematical model illustrating the theory of turbulence , 1948 .
[48] E. Hopf. The partial differential equation ut + uux = μxx , 1950 .
[49] R. Kraichnan,et al. Statistics of decaying Burgers turbulence , 1993 .
[50] Alexei Ilyin,et al. A modified-Leray-α subgrid scale model of turbulence , 2006 .
[51] Darryl D. Holm,et al. The Three Dimensional Viscous Camassa–Holm Equations, and Their Relation to the Navier–Stokes Equations and Turbulence Theory , 2001, nlin/0103039.
[52] Darryl D. Holm,et al. The Navier–Stokes-alpha model of fluid turbulence , 2001, nlin/0103037.
[53] J. Marsden,et al. Numerical Simulations of the Lagrangian Averaged Navier-Stokes (Lans-α) Equations for Forced Homogeneous Isotropic Turbulence , 2001 .