Differential absorption and Raman lidar for water vapor profile measurements; A review

Differential absorption lidar and Raman lidar have been applied to the range-resolved measurements of water vapor density for more than 20 years. During this period, there have been considerable advances in laser and lidar technology, as well as in the understanding of the factors required to optimize both lidar techniques for water vapor measurements. Results have been obtained using both lidar techniques that have led to improved understanding of water vapor distributions in the atmosphere. This paper reviews the theory of the measurements, including the sources of systematic and random error; the progress in lidar technology and techniques during that period, including a brief look at some of the lidar systems in development or proposed; and the steps being taken to improve such lidar systems.

[1]  D. A. Leonard,et al.  Observation of Raman Scattering from the Atmosphere using a Pulsed Nitrogen Ultraviolet Laser , 1967, Nature.

[2]  T. Mckee,et al.  Dye laser spectral purity. , 1982, Applied optics.

[3]  J. Cooney,et al.  Measurements of high resolution atmospheric water-vapor profiles by use of a solar blind Raman lidar. , 1985, Applied optics.

[4]  Robert Gaufrès,et al.  Raman band contours for water vapor as a function of temperature , 1976 .

[5]  Peter F. Moulton,et al.  Ti:sapphire lasers: Out of the lab and back in again , 1990 .

[6]  S H Melfi,et al.  Remote measurements of the atmosphere using Raman scattering. , 1972, Applied optics.

[7]  E. R. Murray Remote Measurement of Gases Using Differential-Absorption Lidar , 1978 .

[8]  Edward V. Browell,et al.  Water-vapor line broadening and shifting by air, nitrogen, oxygen, and argon in the 720-nm wavelength region , 1989 .

[9]  J. Pelon,et al.  Narrow bandwidth Q-switch alexandrite laser for atmospheric applications , 1986 .

[10]  R M Schotland,et al.  Correction function for the lidar equation and some techniques for incoherent CO(2) lidar data reduction. , 1988, Applied optics.

[11]  J. B. DeWolf,et al.  Frequency Spectrum of Laser Echoes from Atmospheric Constituents and Determination of the Aerosol Content of Air , 1968 .

[12]  G. Loper,et al.  Water-vapor continuum CO 2 laser absorption spectra between 27°C and −10°C , 1983 .

[13]  J H Shapiro,et al.  Imaging and target detection with a heterodyne-reception optical radar. , 1981, Applied optics.

[14]  J. Cooney,et al.  Comparisons of Water Vapor Profiles Obtained by Radiosonde and Laser Backscatter , 1971 .

[15]  W B Grant,et al.  Differential absorption lidar signal averaging. , 1988, Applied optics.

[16]  Y Zhao,et al.  Technique for correcting effects of long CO(2) laser pulses in aerosol-backscattered coherent lidar returns. , 1988, Applied optics.

[17]  K. W. Rothe Monitoring of various atmospheric constituents using a c.w. chemical hydrogen/deuterium laser and a pulsed carbon dioxide laser , 1980 .

[18]  F. Duarte,et al.  Flashlamp pumped narrow-linewidth dispersive dye laser oscillators: very low amplified spontaneous emission levels and reduction of linewidth instabilities. , 1990, Applied optics.

[19]  Eugenio Zanzottera,et al.  Differential Absorption Lidar Techniques in the Determination of Trace Pollutants and Physical Parameters of the Atmosphere , 1990 .

[20]  P W Baker,et al.  Atmospheric water vapor differential absorption measurements on vertical paths with a CO2 lidar. , 1983, Applied optics.

[21]  R. Hardesty,et al.  Coherent DIAL measurement of range-resolved water vapor concentration. , 1984, Applied optics.

[22]  Carl M. Penney,et al.  Raman-scattering cross sections for water vapor , 1976 .

[23]  Lidar Measurements of the Vertical Absolute Humidity Distribution in the Boundary Layer , 1981 .

[24]  E. Browell Remote Sensing of Tropospheric Gases and Aerosols with an Airborne DIAL System , 1983 .

[25]  William F. Murphy,et al.  The Rayleigh depolarization ratio and rotational Raman spectrum of water vapor and the polarizability components for the water molecule , 1977 .

[26]  A spectral limitation of the range resolved differential absorption lidar technique , 1981 .

[27]  E. Browell,et al.  Spectroscopy of water vapor in the 720-nm wavelength region - Line strengths, self-induced pressure broadenings and shifts, and temperature dependence of linewidths and shifts , 1989 .

[28]  E Trakhovsky,et al.  Contribution of oxygen to attenuation in the solar blind UV spectral region. , 1989, Applied optics.

[29]  P. Moulton Spectroscopic and laser characteristics of Ti:Al2O3 , 1986 .

[30]  Anthony E. Siegman,et al.  The antenna properties of optical heterodyne receivers , 1966 .

[31]  D. Haner,et al.  Stimulated Raman shifting of the Nd:YAG fourth harmonic (266 nm) in H/sub 2/, HD, and D/sub 2/ , 1990 .

[32]  N. S. Higdon,et al.  Raman-shifted dye laser for water vapor DIAL measurements. , 1987, Applied optics.

[33]  H. Walden,et al.  A lidar system for measuring atmospheric pressure and temperature profiles , 1987 .

[34]  Olga V. Naumenko,et al.  The High-Resolution Spectrum of Water Vapor between 11 600 and 12 750 cm-1 , 1985, Journal of molecular spectroscopy.

[35]  Kenneth Petri,et al.  Variable-wavelength solar-blind Raman lidar for remote measurement of atmospheric water-vapor concentration and temperature. , 1982, Applied optics.

[36]  S. H. Melfi,et al.  OBSERVATION OF RAMAN SCATTERING BY WATER VAPOR IN THE ATMOSPHERE , 1969 .

[37]  E. Armandillo,et al.  An Alexandrite Laser with High Spectral Resolution and High Power Capabilities , 1989, Other Conferences.

[38]  W. Renger,et al.  Atmospheric Aerosol and Humidity Profiling Using an Airborne DIAL System in the Near IR. , 1990 .

[39]  David N. Whiteman,et al.  Observation of atmospheric fronts using Raman lidar moisture measurements , 1989 .

[40]  Valentin Mitev,et al.  Humidity measurements in the free troposphere using Raman backscatter , 1988 .

[41]  J. Bösenberg Measurements of the pressure shift of water vapor absorption lines by simultaneous photoacoustic spectroscopy , 1985, Topical Meeting on Optical Remote Sensing of the Atmosphere.

[42]  S. Gerstl,et al.  A New UV-B Handbook, Vol. 1 , 1986 .

[43]  Edward V. Browell,et al.  Optimization of the alexandrite laser tuning elements for a water vapor lidar , 1990, Photonics West - Lasers and Applications in Science and Engineering.

[44]  V. E. Derr,et al.  Atmospheric water vapor measurement by Raman Lidar , 1971 .

[45]  Norman P. Barnes,et al.  Master oscillator power amplifier performance of Ti:Al/sub 2/O/sub 3/ , 1988 .

[46]  W. Grant Laser remote sensing techniques , 1987 .

[47]  T. Wilkerson,et al.  Water absorption lines, 931-961 nm - Selected intensities, N2-collision-broadening coefficients, self-broadening coefficients, and pressure shifts in air , 1982 .

[48]  Thomas D. Wilkerson,et al.  Intensities and N2 collision-broadening coefficients measured for selected H2O absorption lines between 715 and 732 nm , 1979 .

[49]  E. Browell,et al.  Ultraviolet DIAL measurements of O3 profiles in regions of spatially inhomogeneous aerosols. , 1985, Applied optics.

[50]  E. Browell,et al.  Airborne and spaceborne lidar measurements of water vapor profiles: a sensitivity analysis. , 1989, Applied optics.

[51]  J. Pelon,et al.  Wavelength stabilization and control of the emission of pulsed dye lasers by means of a multibeam Fizeau interferometer , 1981 .

[52]  Joseph H. Boyer,et al.  Efficient Laser Action from 1,3,5,7,8-Pentamethylpyrromethene-BF2 Complex and Its Disodium 2,6,-Disulfonate Derivative , 1989 .

[53]  J C Petheram Differential backscatter from the atmospheric aerosol: the implications for IR differential absorption lidar. , 1981, Applied optics.

[54]  R V Hess,et al.  Pulsed injection control of a titanium-doped sapphire laser. , 1986, Optics letters.

[55]  Humio Inaba,et al.  Laser-Raman radar —Laser-Raman scattering methods for remote detection and analysis of atmospheric pollution , 1972 .

[56]  E. Eloranta,et al.  High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1: theory and instrumentation. , 1983, Applied optics.

[57]  Edward V. Browell,et al.  Airborne water vapor DIAL system development , 1990, Photonics West - Lasers and Applications in Science and Engineering.

[58]  S. H. Melfi,et al.  Observation of Lower-Atmospheric Moisture Structure and Its Evolution Using a Raman Lidar , 1985 .

[59]  Walfried Michaelis,et al.  Moisture Height Profiler , 1987, Other Conferences.

[60]  O. A. Romanovsky,et al.  Influence of the shift H2O absorption lines with air pressure on the accuracy of the atmospheric humidity profiles measured by the differential-absorption method. , 1985, Optics letters.

[61]  A. Green,et al.  UV-B Reaching the Surface , 1982 .

[62]  V. Zuev,et al.  Laser sounding of atmospheric humidity: experiment. , 1983, Applied optics.

[63]  N. S. Higdon,et al.  Raman shifting of KrF laser radiation for tropospheric ozone measurements. , 1991, Applied optics.

[64]  Raman-lidar humidity sounding of the atmospheric boundary-layer. , 1979, Applied optics.

[65]  J. Cooney,et al.  MEASUREMENTS ON THE RAMAN COMPONENT OF LASER ATMOSPHERIC BACKSCATTER , 1968 .

[66]  R Mahon,et al.  Optimization of a Raman shifted dye laser system for DIAL applications. , 1990, Applied optics.

[67]  R L Byer,et al.  Pollutant detection by absorption using mie scattering and topographic targets as retroreflectors. , 1973, Applied optics.

[68]  Pierre H. Flamant,et al.  Lidar Monitoring of the Water Vapor Cycle in the Troposphere. , 1982 .

[69]  J. Cooney,et al.  Remote Measurements of Atmospheric Water Vapor Profiles Using the Raman Component of Laser Backscatter , 1970 .

[70]  William B. Grant The Mobile Atmospheric Pollutant Mapping (MAPM) System: A Coherent CO2 Dial System , 1989, Photonics West - Lasers and Applications in Science and Engineering.

[71]  C. L. Korb,et al.  A Theoretical Study of a Two-Wavelength Lidar Technique for the Measurement of Atmospheric Temperature Profiles , 1982 .

[72]  Jr. Joseph H. Goad Development And Design Of An Airborne Autonomous Wavemeter For Laser Tuning , 1989, Photonics West - Lasers and Applications in Science and Engineering.

[73]  H. Inaba,et al.  Detection of atoms and molecules by Raman scattering and resonance fluorescence , 1976 .

[74]  N. Barnes,et al.  Amplified spontaneous emission measurement of a line-narrowed, tunable, Ti:Al2O3 amplifier using rubidium absorption , 1989 .

[75]  W B Grant,et al.  CO(2) DIAL measurements of water vapor. , 1987, Applied optics.

[76]  Correction scheme for spectral broadening by Rayleigh scattering in differential absorption lidar measurements of water vapor in the troposphere. , 1987, Applied optics.

[77]  D. Renaut,et al.  Boundary-Layer Water Vapor Probing with a Solar-Blind Raman Lidar: Validations, Meteorological Observations and Prospects , 1988 .

[78]  A. Ansmann Errors in ground-based water-vapor DIAL measurements due to Doppler-broadened Rayleigh backscattering. , 1985, Applied optics.

[79]  O. Peterson,et al.  High gain laser performance in alexandrite , 1979, IEEE Journal of Quantum Electronics.

[80]  R. Measures Laser remote sensing : fundamentals and applications , 1984 .

[81]  N. Barnes,et al.  Amplifier and Line-Narrowed Oscillator Performance of Ti:Al2O3 , 1986 .

[82]  S. H. Melfi,et al.  Raman lidar system for the measurement of water vapor and aerosols in the Earth's atmosphere. , 1992, Applied optics.

[83]  D. Renaut,et al.  Daytime Raman-lidar measurements of water vapor. , 1980, Optics letters.