Astronomical Distance Determination in the Space Age

The formal division of the distance indicators into primary and secondary leads to difficulties in description of methods which can actually be used in two ways: with, and without the support of the other methods for scaling. Thus instead of concentrating on the scaling requirement we concentrate on all methods of distance determination to extragalactic sources which are designated, at least formally, to use for individual sources. Among those, the Supernovae Ia is clearly the leader due to its enormous success in determination of the expansion rate of the Universe. However, new methods are rapidly developing, and there is also a progress in more traditional methods. We give a general overview of the methods but we mostly concentrate on the most recent developments in each field, and future expectations.

[1]  Misty C. Bentz,et al.  AGN Reverberation Mapping , 2015, 1505.04805.

[2]  Y. Zeldovich,et al.  The Observations of relic radiation as a test of the nature of X-Ray radiation from the clusters of galaxies , 1972 .

[3]  Mario Hamuy The Standard Candle Method for Type II Supernovae and the Hubble Constan , 2005 .

[4]  Stephen Justham,et al.  SINGLE-DEGENERATE TYPE Ia SUPERNOVAE WITHOUT HYDROGEN CONTAMINATION , 2011, 1102.4913.

[5]  D. Dultzin,et al.  Fifty Years of Quasars: Physical Insights and Potential for Cosmology , 2014, 1411.6900.

[6]  Rubina Kotak,et al.  Type II‐P supernovae as standardized candles: improvements using near‐infrared data★ , 2009, 0912.3107.

[7]  L. Zampieri,et al.  RADIATION-HYDRODYNAMICAL MODELING OF CORE-COLLAPSE SUPERNOVAE: LIGHT CURVES AND THE EVOLUTION OF PHOTOSPHERIC VELOCITY AND TEMPERATURE , 2011, 1108.0688.

[8]  Bo Wang,et al.  The Progenitors of Type Ia Supernovae , 2012, 1204.1155.

[9]  Armin Rest,et al.  COLOR DISPERSION AND MILKY-WAY-LIKE REDDENING AMONG TYPE Ia SUPERNOVAE , 2013, 1306.4050.

[10]  X. Barcons,et al.  Survival of the Obscuring Torus in the Most Powerful Active Galactic Nuclei , 2017, 1705.04323.

[11]  C. Broeck,et al.  Advanced Virgo: a second-generation interferometric gravitational wave detector , 2014, 1408.3978.

[12]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[13]  John P. Blakeslee,et al.  MEASURING INFRARED SURFACE BRIGHTNESS FLUCTUATION DISTANCES WITH HST WFC3: CALIBRATION AND ADVICE , 2015, 1505.00400.

[14]  D. Baade,et al.  Properties of extragalactic dust inferred from linear polarimetry of Type Ia Supernovae , 2014, 1407.0136.

[15]  M. Dolci,et al.  SN 2002cv: a heavily obscured Type Ia supernova , 2007, 0710.4503.

[16]  Samaya Nissanke,et al.  Determining the Hubble constant from gravitational wave observations of merging compact binaries , 2013, 1307.2638.

[17]  Ariel Goobar,et al.  Low RV from Circumstellar Dust around Supernovae , 2008, 0809.1094.

[18]  Takeo Minezaki,et al.  MAGNUM (multicolor active galactic nuclei monitoring) Project , 1998, Astronomical Telescopes and Instrumentation.

[19]  A. G.,et al.  MEASUREMENTS OF AND FROM 42 HIGH-REDSHIFT SUPERNOVAE , 1998 .

[20]  A. Pastorello,et al.  Received... / Accepted... , 2004 .

[21]  R. Holanda,et al.  Constraining H0 in general dark energy models from Sunyaev-Zeldovich/X-ray technique and complementary probes , 2010, 1006.4200.

[22]  A. M. Khokhlov,et al.  Development of detonations in degenerate stars , 1986 .

[23]  S. G. Sergeev,et al.  Lag-Luminosity Relationship for Interband Lags between Variations in B, V, R, and I Bands in Active Galactic Nuclei , 2005 .

[24]  Arlin Crotts,et al.  The Nature and Geometry of the Light Echo from SN 2006X , 2008, 0804.2030.

[25]  Misty C. Bentz,et al.  A LOW-MASS BLACK HOLE IN THE NEARBY SEYFERT GALAXY UGC 06728 , 2016, 1608.03893.

[26]  B. Madore,et al.  The Hubble Constant , 2010, 1004.1856.

[27]  J. Tonry,et al.  The ACS Virgo Cluster Survey. XIII. SBF Distance Catalog and the Three-dimensional Structure of the Virgo Cluster , 2007, astro-ph/0702510.

[28]  Emma Gardner,et al.  The UV/optical lags in NGC 5548: It's not disc reprocessing and the soft X-ray excess is part of the solution , 2016 .

[29]  K. Danzmann LISA: laser interferometer space antenna for gravitational wave measurements , 1996 .

[30]  Hao-Ran Yu,et al.  Constraining smoothness parameter and the DD relation of Dyer-Roeder equation with supernovae , 2013, 1305.6989.

[31]  J. K. Blackburn,et al.  A gravitational-wave standard siren measurement of the Hubble constant , 2017, Nature.

[32]  N. B. Suntzeff,et al.  The ESSENCE Supernova Survey: Survey Optimization, Observations, and Supernova Photometry , 2007, astro-ph/0701043.

[33]  S. E. Woosley,et al.  How Massive Single Stars End Their Life , 2003 .

[34]  Satoshi Nozawa,et al.  Relativistic corrections to the Sunyaev-Zel'dovich effects for clusters of galaxies , 1999 .

[35]  D. Bersier,et al.  The ASAS-SN Bright Supernova Catalog – II. 2015 , 2016, 1704.02320.

[36]  Ilan Manulis,et al.  Supernova Discoveries 2010–2011: Statistics and Trends , 2011, 1103.5165.

[37]  Wendy L. Freedman,et al.  Cosmology at a crossroads , 2017, Nature Astronomy.

[38]  Wendy L. Freedman,et al.  ON THE SOURCE OF THE DUST EXTINCTION IN TYPE Ia SUPERNOVAE AND THE DISCOVERY OF ANOMALOUSLY STRONG Na i ABSORPTION , 2013, 1311.0147.

[39]  Wendy L. Freedman,et al.  The Carnegie Supernova Project: The Low‐Redshift Survey , 2005, astro-ph/0512039.

[40]  V. C. Busti,et al.  Galaxy clusters, type Ia supernovae and the fine structure constant , 2016, 1605.02578.

[41]  A. Pastorello,et al.  Anomalous extinction behaviour towards the Type Ia SN 2003cg , 2006, astro-ph/0603316.

[42]  G. Fiorentino,et al.  Cepheid theoretical models and observations in HST/WFC3 filters: the effect on the Hubble constant H0 , 2013, 1306.6276.

[43]  P. Massey,et al.  The Progenitor Masses of Wolf-Rayet Stars and Luminous Blue Variables Determined from Cluster Turnoffs. II. Results from 12 Galactic Clusters and OB Associations , 2001 .

[44]  Mark Sullivan,et al.  The Progenitors of Type Ia Supernovae , 2008, 0806.3729.

[45]  D. Schneider,et al.  The X-Ray-to-Optical Properties of Optically Selected Active Galaxies over Wide Luminosity and Redshift Ranges , 2006, astro-ph/0602407.

[46]  Nial R. Tanvir,et al.  The Cepheid Distance to NGC 1637: A Direct Test of the Expanding Photosphere Method Distance to SN 1999em , 2003, astro-ph/0305259.

[47]  John P. Blakeslee,et al.  Cosmic distances from surface brightness fluctuations , 2012, Proceedings of the International Astronomical Union.

[48]  M. Phillips,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[49]  C. Sarazin X-Ray Emission from Clusters of Galaxies , 1988 .

[50]  David O. Jones,et al.  Type Ia Supernova Distances at Redshift >1.5 from the Hubble Space Telescope Multi-cycle Treasury Programs: The Early Expansion Rate , 2017, 1710.00844.

[51]  J. Lépine,et al.  Detection of strong H2O emission from galaxy NGC4945 , 1979, Nature.

[52]  Jeremy D. Murphy,et al.  THE MASSIVE SURVEY. I. A VOLUME-LIMITED INTEGRAL-FIELD SPECTROSCOPIC STUDY OF THE MOST MASSIVE EARLY-TYPE GALAXIES WITHIN 108 Mpc , 2014, 1407.1054.

[53]  M. Sullivan,et al.  SiFTO: An Empirical Method for Fitting SN Ia Light Curves , 2008, 0803.3441.

[54]  J. E. Carlstrom,et al.  Determining the Cosmic Distance Scale from Interferometric Measurements of the Sunyaev-Zeldovich Effect , 2001 .

[55]  M. Parthasarathy,et al.  A review of type Ia supernova spectra , 2014, 1402.6337.

[56]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy & Astrophysics.

[57]  Dan Maoz,et al.  Star Formation, Supernovae, Iron, and α: Consistent Cosmic and Galactic Histories , 2017, 1703.04540.

[58]  Wendy L. Freedman,et al.  Measuring and modeling the universe , 2010 .

[59]  A. Krolak,et al.  Coalescing binaries—Probe of the universe , 1987 .

[60]  J. P. Huchra,et al.  Final Results from the Hubble Space Telescope Key Project to Measure the Hubble Constant , 1998, astro-ph/9801080.

[61]  Adam G. Riess,et al.  RECONSIDERING THE EFFECTS OF LOCAL STAR FORMATION ON TYPE Ia SUPERNOVA COSMOLOGY , 2015, 1506.02637.

[62]  J. McClintock,et al.  Black Holes in Binary Systems , 1992 .

[63]  E. Hubble,et al.  No. 376. A spiral nebula as a stellar system. Messier 31. , 1929 .

[64]  S. E. Woosley,et al.  SUB-CHANDRASEKHAR MASS MODELS FOR SUPERNOVAE , 2010, 1010.5292.

[65]  Daniel E. Holz,et al.  Using Gravitational-Wave Standard Sirens , 2005, astro-ph/0504616.

[66]  William A. Fowler,et al.  Nucleosynthesis in Supernovae. , 1960 .

[67]  Ulf H. Danielsson,et al.  Constraining dark energy , 2012, 1204.3311.

[68]  J. Prieto,et al.  THE MAN BEHIND THE CURTAIN: X-RAYS DRIVE THE UV THROUGH NIR VARIABILITY IN THE 2013 ACTIVE GALACTIC NUCLEUS OUTBURST IN NGC 2617 , 2013, 1310.2241.

[69]  A. I. Shapovalova,et al.  Line Shape Variability in a Sample of AGN with Broad Lines , 2015, 1510.02162.

[70]  C. Baltay,et al.  The reddening law of Type Ia Supernovae: separating intrinsic variability from dust using equivalent widths , 2011, 1103.5300.

[71]  Christopher F. McKee,et al.  Reverberation mapping of the emission line regions of Seyfert galaxies and quasars. , 1982 .

[72]  Daniel E. Holz,et al.  Short GRB and binary black hole standard sirens as a probe of dark energy , 2006 .

[73]  Laura Chomiuk,et al.  SN 2011fe: A Laboratory for Testing Models of Type Ia Supernovae , 2013, Publications of the Astronomical Society of Australia.

[74]  D. Branch,et al.  Determination of the Hubble Constant Using a Two-Parameter Luminosity Correction for Type Ia Supernovae , 1999, astro-ph/9904347.

[75]  F. Zwicky,et al.  On Super-Novae , 1934, Proceedings of the National Academy of Sciences.

[76]  Bradley E. Schaefer,et al.  An absence of ex-companion stars in the type Ia supernova remnant SNR 0509−67.5 , 2012, Nature.

[77]  Misty C. Bentz,et al.  A REVERBERATION-BASED BLACK HOLE MASS FOR MCG-06-30-15 , 2016, 1608.01229.

[78]  M. V. van Kerkwijk,et al.  A SEARCH FOR RAPIDLY ACCRETING WHITE DWARFS IN THE SMALL MAGELLANIC CLOUD , 2013 .

[79]  S. E. Woosley,et al.  On the Origin of the Type Ia Supernova Width-Luminosity Relation , 2006, astro-ph/0609540.

[80]  M. Sullivan,et al.  Diversity in extinction laws of Type Ia supernovae measured between 0.2 and 2 μm , 2015, 1504.02101.

[81]  Moscow,et al.  Progenitor mass of the type IIp supernova 2005cs , 2008, 0809.3766.

[82]  Albert Einstein,et al.  Näherungsweise Integration der Feldgleichungen der Gravitation , 2006 .

[83]  B. J. Shappee,et al.  Swope Photometric Observations of SN 2017cbv = DLT17u , 2017 .

[84]  Matthew Colless,et al.  The Taipan Galaxy Survey: Scientific Goals and Observing Strategy , 2017, Publications of the Astronomical Society of Australia.

[85]  Satoshi Nozawa,et al.  Relativistic corrections to the Sunyaev-Zel'dovich effects for clusters of galaxies , 1999 .

[86]  D. Nadyozhin,et al.  Hydrodynamical models of type II supernovae , 1982 .

[87]  Kevin Krisciunas,et al.  The Type Ia supernova 2004S, a clone of SN 2001el, and the optimal photometric bands for extinction estimation , 2007 .

[88]  Kevin Krisciunas,et al.  THE CARNEGIE SUPERNOVA PROJECT: ANALYSIS OF THE FIRST SAMPLE OF LOW-REDSHIFT TYPE-Ia SUPERNOVAE , 2009, 0910.3317.

[89]  Naomasa Nakai,et al.  Evidence for a black hole from high rotation velocities in a sub-parsec region of NGC4258 , 1995, Nature.

[90]  S. B. Cenko,et al.  THE LICK AGN MONITORING PROJECT 2011: SPECTROSCOPIC CAMPAIGN AND EMISSION-LINE LIGHT CURVES , 2015, 1503.01146.

[91]  Y. Yoshii,et al.  The MAGNUM Project: AGN Variability as a New Technique for Distance Determination , 2002 .

[92]  B. M. Peterson,et al.  Central Masses and Broad-Line Region Sizes of Active Galactic Nuclei. II. A Homogeneous Analysis of a Large Reverberation-Mapping Database , 2004, astro-ph/0407299.

[93]  R. Margutti,et al.  An Open Catalog for Supernova Data , 2016, 1605.01054.

[94]  Rosanne Di Stefano,et al.  THE PROGENITORS OF TYPE Ia SUPERNOVAE. I. ARE THEY SUPERSOFT SOURCES , 2009, 0912.0757.

[95]  W. Hillebrandt,et al.  On the brightness distribution of type Ia supernovae from violent white dwarf mergers , 2012, 1209.0645.

[96]  M. Phillips,et al.  The Absolute Luminosities of the Calan/Tololo Type Ia Supernovae , 1996, astro-ph/9609059.

[97]  Y. Andrillat,et al.  Variations du Spectre du Noyau de la Galaxie de Seyfert NGC 3516 , 1968 .

[98]  Subhash Bose,et al.  DISTANCE DETERMINATION TO EIGHT GALAXIES USING EXPANDING PHOTOSPHERE METHOD , 2014, 1401.5115.

[99]  Alexei V. Filippenko,et al.  Optical spectra of supernovae , 1997 .

[100]  William Press,et al.  A Precise Distance Indicator: Type Ia Supernova Multicolor Light-Curve Shapes , 1996, astro-ph/9604143.

[101]  D Huet,et al.  GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence , 2016 .

[102]  R. Kudritzki,et al.  An eclipsing-binary distance to the Large Magellanic Cloud accurate to two per cent , 2013, Nature.

[103]  Evert Rol,et al.  A γ-ray burst at a redshift of z ≈ 8.2 , 2009, Nature.

[104]  Johns Hopkins University,et al.  The Cepheid distance to the maser-host galaxy NGC 4258: studying systematics with the Large Binocular Telescope , 2014, 1412.2138.

[105]  C. M. Gaskell,et al.  Line variations in quasars and Seyfert galaxies , 1986 .

[106]  Iu. P. Pskovskii Light curves, color curves, and expansion velocity of type I supernovae as functions of the rate of brightness decline , 1977 .

[107]  F. Thim,et al.  Cepheids and Long-Period Variables in NGC 4395 , 2004 .

[108]  Eric W. Peng,et al.  THE ACS FORNAX CLUSTER SURVEY. V. MEASUREMENT AND RECALIBRATION OF SURFACE BRIGHTNESS FLUCTUATIONS AND A PRECISE VALUE OF THE FORNAX–VIRGO RELATIVE DISTANCE , 2009, 0901.1138.

[109]  Takashi Nagao,et al.  Constraining the Amount of Circumstellar Matter and Dust around Type Ia Supernovae through Near-Infrared Echoes , 2014, 1411.3778.

[110]  Erika K. Carlson,et al.  The Carnegie-Chicago Hubble Program. I. A New Approach to the Distance Ladder Using Only Distance Indicators of Population II , 2016 .

[111]  S. Faber,et al.  Velocity dispersions and mass-to-light ratios for elliptical galaxies. , 1976 .

[112]  T Sakamoto,et al.  A gamma-ray burst at a redshift of z approximately 8.2. , 2009, Nature.

[113]  Curtis McCully,et al.  FLOYDS Classification of DLT17u/AT 2017cbv as a Very Young Type Ia Supernova , 2017 .

[114]  M. Sullivan,et al.  SN 2012ec: mass of the progenitor from PESSTO follow-up of the photospheric phase , 2014, 1410.8393.

[115]  Shay Zucker,et al.  QUASAR CARTOGRAPHY: FROM BLACK HOLE TO BROAD-LINE REGION SCALES , 2013, 1305.6499.

[116]  Gerard A. Kriss,et al.  Steps toward Determination of the Size and Structure of the Broad-Line Region in Active Galactic Nuclei. XI. Intensive Monitoring of the Ultraviolet Spectrum of NGC 7469 , 1997 .

[117]  R. G. Izzard,et al.  Theoretical uncertainties of the Type Ia supernova rate , 2014, 1401.2895.

[118]  Takeo Minezaki,et al.  Calibration of AGN Reverberation Distance Measurements , 2017, 1705.09757.

[119]  J. Carlstrom,et al.  Cosmology with the Sunyaev-Zel'dovich Effect , 2002, astro-ph/0208192.

[120]  M. Birkinshaw,et al.  The Sunyaev-Zel’dovich Effect , 1998, astro-ph/9808050.

[121]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[122]  J. R. Fisher,et al.  A New method of determining distances to galaxies , 1975 .

[123]  M. J. Graham,et al.  Spectroscopic Confirmation and Classification of PSN J14323388-4413278 in NGC 5643 , 2013 .

[124]  R. Lang,et al.  Localizing Coalescing Massive Black Hole Binaries with Gravitational Waves , 2007, 0710.3795.

[125]  Volker Springel,et al.  HELIUM-IGNITED VIOLENT MERGERS AS A UNIFIED MODEL FOR NORMAL AND RAPIDLY DECLINING TYPE Ia SUPERNOVAE , 2013, 1302.2913.

[126]  Rasmus Voss,et al.  Upper limits on bolometric luminosities of 10 Type Ia supernova progenitors from Chandra observations , 2011, 1109.6605.

[127]  Ph. Podsiadlowski,et al.  The C-flash and the ignition conditions of type Ia , 1996 .

[128]  Marek Gierlinski,et al.  High-frequency X-ray variability as a mass estimator of stellar and supermassive black holes , 2007, 0710.1566.

[129]  D. Watson,et al.  High-redshift standard candles: predicted cosmological constraints , 2013, 1311.2356.

[130]  Filippo Mannucci,et al.  Type-Ia Supernova Rates and the Progenitor Problem: A Review , 2011, Publications of the Astronomical Society of Australia.

[131]  Stefano Casertano,et al.  Identification of Type Ia Supernovae at Redshift 1.3 and Beyond with the Advanced Camera for Surveys on the Hubble Space Telescope , 2003, astro-ph/0308185.

[132]  Chien Y. Peng,et al.  THE CARNEGIE-IRVINE GALAXY SURVEY. I. OVERVIEW AND ATLAS OF OPTICAL IMAGES , 2011, 1111.4605.

[133]  D. Andrew Peer Reviewed Title: Towards a Cosmological Hubble Diagram for Type II-P Supernovae , 2006 .

[134]  Gerard A. Kriss,et al.  Multiwavelength observations of short-timescale variability in NGC 4151 .4. Analysis of multiwavelength continuum variability , 1996 .

[135]  S. Bianchi A new cosmological distance measure using AGN X-ray variability , 2014 .

[136]  Hiroaki Yamamoto,et al.  Interferometer design of the KAGRA gravitational wave detector , 2013, 1306.6747.

[137]  Paul S. Smith,et al.  Reverberation Measurements for 17 Quasars and the Size-Mass-Luminosity Relations in Active Galactic Nuclei , 1999 .

[138]  S. E. Woosley,et al.  The diversity of type Ia supernovae from broken symmetries , 2009, Nature.

[139]  H. Bondi,et al.  Plane Gravitational Waves in General Relativity , 1957, Nature.

[140]  M. W. Bautz,et al.  Measuring the Three-dimensional Structure of Galaxy Clusters. II. Are Clusters of Galaxies Oblate or Prolate? , 2006, astro-ph/0602051.

[141]  B. J. Shappee,et al.  Whimper of a Bang: Documenting the Final Days of the Nearby Type Ia Supernova 2011fe , 2014, 1608.01155.

[142]  et al,et al.  UBVRI Light Curves of 44 Type Ia Supernovae , 2005 .

[143]  I. M. H. Etherington Republication of: LX. On the definition of distance in general relativity , 2007 .

[144]  G. Rauw,et al.  Time series of high-resolution spectra of SN 2014J observed with the TIGRE telescope , 2015, 1506.00938.

[145]  Robert Antonucci,et al.  Unified models for active galactic nuclei and quasars , 1993 .

[146]  J. Frieman,et al.  Dark Energy and the Accelerating Universe , 2008, 0803.0982.

[147]  O. C. Wilson,et al.  Possible Applications of Supernovae to the Study of the Nebular Red Shifts. , 1939 .

[148]  Paulina Lira,et al.  Reverberation Mapping of the most luminous Quasars at z~2-3. , 2016 .

[149]  Donald W. Sweeney,et al.  LSST Science Book, Version 2.0 , 2009, 0912.0201.

[150]  F. Pirani,et al.  Republication of: On the physical significance of the Riemann tensor , 2009 .

[151]  Bruno Leibundgut,et al.  Supernova Cosmology: Legacy and Future , 2011, 1102.1431.

[152]  R. Holanda,et al.  Probing the cosmic distance-duality relation with the Sunyaev-Zel'dovich effect, X-ray observations and supernovae Ia , 2011, 1104.3753.

[153]  N. M. Brown,et al.  Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo , 2013, Living Reviews in Relativity.

[154]  Y. Yoshii,et al.  A NEW METHOD FOR MEASURING EXTRAGALACTIC DISTANCES , 2014, 1403.1693.

[155]  H. Winkler,et al.  Testing thermal reprocessing in active galactic nuclei accretion discs , 2007, 0706.1464.

[156]  M. Phillips,et al.  The High-Z Supernova Search: Measuring Cosmic Deceleration and Global Curvature of the Universe Using Type Ia Supernovae , 1998, astro-ph/9805200.

[157]  N. B. Suntzeff,et al.  Observational Constraints on the Nature of Dark Energy: First Cosmological Results from the ESSENCE Supernova Survey , 2007, astro-ph/0701041.

[158]  Rasmus Voss,et al.  Obscuration of supersoft X-ray sources by circumbinary material : A way to hide Type Ia supernova progenitors? , 2012, 1207.6310.

[159]  Philip Graff,et al.  GOING THE DISTANCE: MAPPING HOST GALAXIES OF LIGO AND VIRGO SOURCES IN THREE DIMENSIONS USING LOCAL COSMOGRAPHY AND TARGETED FOLLOW-UP , 2016, 1603.07333.

[160]  Gerard A. Luppino,et al.  The SBF Survey of Galaxy Distances. IV. SBF Magnitudes, Colors, and Distances , 2000, astro-ph/0011223.

[161]  R. Davies,et al.  Spectroscopy and photometry of elliptical galaxies. I: a new distance estimator , 1987 .

[162]  Peter Garnavich,et al.  THE DISCOVERY OF THE MOST DISTANT KNOWN TYPE Ia SUPERNOVA AT REDSHIFT 1.914 , 2013, 1304.0768.

[163]  M. C. Bentz,et al.  SPACE TELESCOPE AND OPTICAL REVERBERATION MAPPING PROJECT. II. SWIFT AND HST REVERBERATION MAPPING OF THE ACCRETION DISK OF NGC 5548 , 2015, 1501.05951.

[164]  B. Paczyński Gamma-ray bursters at cosmological distances , 1986 .

[165]  Chen Hu,et al.  SUPERMASSIVE BLACK HOLES WITH HIGH ACCRETION RATES IN ACTIVE GALACTIC NUCLEI. II. THE MOST LUMINOUS STANDARD CANDLES IN THE UNIVERSE , 2014, 1408.2337.

[166]  R. Holanda,et al.  TESTING THE DISTANCE–DUALITY RELATION WITH GALAXY CLUSTERS AND TYPE Ia SUPERNOVAE , 2010, 1005.4458.

[167]  Von Welch,et al.  Reproducing GW150914: The First Observation of Gravitational Waves From a Binary Black Hole Merger , 2016, Computing in Science & Engineering.

[168]  Shai Kaspi,et al.  Reverberation Mapping of High-Luminosity Quasars: First Results , 2006, astro-ph/0612722.

[169]  Stefano Casertano,et al.  A REDETERMINATION OF THE HUBBLE CONSTANT WITH THE HUBBLE SPACE TELESCOPE FROM A DIFFERENTIAL DISTANCE LADDER , 2009, 0905.0695.

[170]  M. Salvato,et al.  The X-ray to optical-UV luminosity ratio of X-ray selected type 1 AGN in XMM-COSMOS , 2009, 0912.4166.

[171]  L. Pasquini,et al.  Upper limit for circumstellar gas around the type Ia SN 2000cx , 2007, 0708.3698.

[172]  F. Vagnetti,et al.  Variability and the X-ray/UV ratio of Active Galactic Nuclei , 2010, 1005.0144.

[173]  Kirk T. Korista,et al.  The Variable Diffuse Continuum Emission of Broad-Line Clouds , 2001 .

[174]  D. Schneider,et al.  The X-Ray Properties of the Most Luminous Quasars from the Sloan Digital Sky Survey , 2007, 0705.3059.

[175]  V. M. Lyutyi,et al.  Rapid variations of H$alpha$ intensity in the nuclei of Seyfert galaxies NGC 4151, 3516, 1068. , 1973 .

[176]  W. Kollatschny,et al.  Steps toward Determination of the Size and Structure of the Broad-Line Region in Active Galactic Nuclei. XV. Long-Term Optical Monitoring of NGC 5548 , 1992, astro-ph/9808236.

[177]  C. Baltay,et al.  CONFIRMATION OF A STAR FORMATION BIAS IN TYPE Ia SUPERNOVA DISTANCES AND ITS EFFECT ON THE MEASUREMENT OF THE HUBBLE CONSTANT , 2014, 1412.6501.

[178]  M. Sullivan,et al.  SALT2: using distant supernovae to improve the use of type Ia supernovae as distance indicators , 2007, astro-ph/0701828.

[179]  M. Della Valle,et al.  Type Ia supernovae in late type galaxies : reddening correction, scale height, and absolute maximum magnitude , 1992 .

[180]  Thomas A. Weaver,et al.  EVOLUTION AND EXPLOSION OF MASSIVE STARS * , 1980 .

[181]  University of Crete,et al.  Black hole mass estimation from X-ray variability measurements in active galactic nuclei , 2004 .

[182]  Risa H. Wechsler,et al.  EmpiriciSN: Re-sampling Observed Supernova/Host Galaxy Populations using an XD Gaussian Mixture Model , 2016 .

[183]  Douglas P. Finkbeiner,et al.  MEASURING REDDENING WITH SLOAN DIGITAL SKY SURVEY STELLAR SPECTRA AND RECALIBRATING SFD , 2010, 1012.4804.

[184]  Daniel E. Welty,et al.  DIFFUSE ATOMIC AND MOLECULAR GAS IN THE INTERSTELLAR MEDIUM OF M82 TOWARD SN 2014J , 2014, 1407.5723.

[185]  Gautham Narayan,et al.  TYPE Ia SUPERNOVA LIGHT CURVE INFERENCE: HIERARCHICAL MODELS IN THE OPTICAL AND NEAR-INFRARED , 2010, 1011.5910.

[186]  D. Xu,et al.  On the Gamma-ray Burst Cosmology , 2005 .

[187]  Kevin Krisciunas,et al.  SWIFT ULTRAVIOLET OBSERVATIONS OF SUPERNOVA 2014J IN M82: LARGE EXTINCTION FROM INTERSTELLAR DUST , 2014, 1408.2381.

[188]  Bernard F. Schutz,et al.  Networks of gravitational wave detectors and three figures of merit , 2011, 1102.5421.

[189]  Stephen J. Smartt,et al.  Progenitors of Core-Collapse Supernovae , 2009, 0908.0700.

[190]  S. Woosley,et al.  Sub-Chandrasekhar mass models for Type IA supernovae , 1994 .

[191]  M. Sullivan,et al.  Is There Evidence for a Hubble Bubble? The Nature of Type Ia Supernova Colors and Dust in External Galaxies , 2007, 0705.0367.

[192]  M. Phillips,et al.  The Absolute Magnitudes of Type IA Supernovae , 1993 .

[193]  Jean-Luc Starck,et al.  Weak Gravitational Lensing , 2012 .

[194]  R. Ellis,et al.  Measurements of the cosmological parameters omega and lambda from the first seven supernovae at z greater than or equal to 0.35 , 1996, astro-ph/9608192.

[195]  J. Neill,et al.  Gemini Spectroscopy of Supernovae from the Supernova Legacy Survey: Improving High-Redshift Supernova Selection and Classification , 2005, astro-ph/0509195.

[196]  Gijs Nelemans,et al.  Faint Thermonuclear Supernovae from AM Canum Venaticorum Binaries , 2007, astro-ph/0703578.

[197]  S. Jha,et al.  Measuring the Hubble constant with Type Ia supernovae as near-infrared standard candles , 2017, 1707.00715.

[198]  Bradley M. Peterson,et al.  Measuring the Masses of Supermassive Black Holes , 2014 .

[199]  Astronomy,et al.  THE RADIUS–LUMINOSITY RELATIONSHIP FOR ACTIVE GALACTIC NUCLEI: THE EFFECT OF HOST-GALAXY STARLIGHT ON LUMINOSITY MEASUREMENTS. II. THE FULL SAMPLE OF REVERBERATION-MAPPED AGNs , 2008, 0812.2283.

[200]  V. S. Imshennik,et al.  On the theory of the light curves of supernovae , 1971 .

[201]  J. E. O'Donnell R(sub nu)-dependent optical and near-ultraviolet extinction , 1994 .

[202]  Florentin Millour,et al.  Mapping the radial structure of AGN tori , 2011, 1110.4290.

[203]  Keith Horne,et al.  A test of the failed disc wind scenario for the origin of the broad-line region in active galactic nuclei , 2013, 1306.2835.

[204]  Keith Horne,et al.  Accretion disc time lag distributions: applying CREAM to simulated AGN light curves , 2015, 1511.06162.

[205]  C. Baltay,et al.  Evidence of Environmental Dependencies of Type Ia Supernovae from the Nearby Supernova Factory indicated by Local H$\alpha$ , 2013, 1309.1182.

[206]  Deepak Jain,et al.  Observational cosmology and the cosmic distance duality relation , 2011, 1403.2070.

[207]  T. Dwelly,et al.  Swift monitoring of NGC 5548: X-ray reprocessing and short-term UV/optical variability , 2014, 1407.6361.

[208]  Copenhagen,et al.  The death of massive stars – I. Observational constraints on the progenitors of Type II-P supernovae , 2009 .

[209]  Margarita Karovska,et al.  Quasar Parallax: A Method for Determining Direct Geometrical Distances to Quasars , 2002 .

[210]  T. Davis,et al.  A NEW COSMOLOGICAL DISTANCE MEASURE USING ACTIVE GALACTIC NUCLEI , 2011, 1109.4632.

[211]  R. Ellis,et al.  Discovery of a supernova explosion at half the age of the Universe , 1997, Nature.

[212]  Bernard F. Schutz,et al.  Lighthouses of Gravitational Wave Astronomy , 2001, gr-qc/0111095.

[213]  Yannick Mellier,et al.  The distance duality relation from X-ray and SZ observations of clusters , 2004 .

[214]  Stuart A. Sim,et al.  Modeling Type Ia supernova explosions , 2011 .

[215]  P. A. Mazzali,et al.  Breaking the colour-reddening degeneracy in Type Ia supernovae , 2016 .

[216]  M. Sullivan,et al.  The dependence of Type Ia Supernovae luminosities on their host galaxies , 2010, 1003.5119.

[217]  F. Barone,et al.  Advanced Virgo: a 2nd generation interferometric gravitational wave detector , 2014 .

[218]  Wendy L. Freedman,et al.  THE CARNEGIE SUPERNOVA PROJECT: LIGHT-CURVE FITTING WITH SNooPy , 2010, 1010.4040.

[219]  M. Sullivan,et al.  SNLS3: CONSTRAINTS ON DARK ENERGY COMBINING THE SUPERNOVA LEGACY SURVEY THREE-YEAR DATA WITH OTHER PROBES , 2011, 1104.1444.

[220]  O. Yaron,et al.  An Extended Grid of Nova Models. II. The Parameter Space of Nova Outbursts , 2005 .

[221]  Texas Tech University,et al.  Multi-messenger observations of a binary neutron star merger , 2017 .

[222]  J. Lasota,et al.  Slim Accretion Disks , 1988 .

[223]  H. Kuncarayakti,et al.  A HUBBLE DIAGRAM FROM TYPE II SUPERNOVAE BASED SOLELY ON PHOTOMETRY: THE PHOTOMETRIC COLOR METHOD , 2015, 1511.05145.

[224]  Marat Gilfanov,et al.  He II recombination lines as a test of the nature of SN Ia progenitors in elliptical galaxies , 2013, 1302.5911.

[225]  Andrew M. Hopkins,et al.  On the Normalization of the Cosmic Star Formation History , 2006, astro-ph/0601463.

[226]  M. Sullivan,et al.  LSQ13fn: A type II-Plateau supernova with a possibly low metallicity progenitor that breaks the standardised candle relation , 2015, 1511.01718.

[227]  S. Deustua,et al.  THE HUBBLE SPACE TELESCOPE CLUSTER SUPERNOVA SURVEY. V. IMPROVING THE DARK-ENERGY CONSTRAINTS ABOVE z > 1 AND BUILDING AN EARLY-TYPE-HOSTED SUPERNOVA SAMPLE , 2011, 1105.3470.

[228]  Elisabeta Lusso,et al.  A HUBBLE DIAGRAM FOR QUASARS , 2015, Front. Astron. Space Sci..

[229]  Chen Hu,et al.  SUPERMASSIVE BLACK HOLES WITH HIGH ACCRETION RATES IN ACTIVE GALACTIC NUCLEI. V. A NEW SIZE–LUMINOSITY SCALING RELATION FOR THE BROAD-LINE REGION , 2016, 1604.06218.

[230]  Shai Kaspi,et al.  A TENTATIVE SIZE–LUMINOSITY RELATION FOR THE IRON EMISSION-LINE REGION IN QUASARS , 2014, 1404.6142.

[231]  Stefano Casertano,et al.  A 3% SOLUTION: DETERMINATION OF THE HUBBLE CONSTANT WITH THE HUBBLE SPACE TELESCOPE AND WIDE FIELD CAMERA 3 , 2011, 1103.2976.

[232]  Timothy D. Brandt,et al.  The delay-time distribution of Type Ia supernovae from Sloan II , 2012, 1206.0465.

[233]  S. Deustua,et al.  PRECISION MEASUREMENT OF THE MOST DISTANT SPECTROSCOPICALLY CONFIRMED SUPERNOVA Ia WITH THE HUBBLE SPACE TELESCOPE , 2012, 1205.3494.

[234]  Joseph M. Mazzarella,et al.  REDSHIFT-INDEPENDENT DISTANCES IN THE NASA/IPAC EXTRAGALACTIC DATABASE: METHODOLOGY, CONTENT, AND USE OF NED-D , 2016, 1612.09263.

[235]  Daniel Kasen,et al.  MEASURING EJECTA VELOCITY IMPROVES TYPE Ia SUPERNOVA DISTANCES , 2010, 1011.4517.

[236]  M. Asplund,et al.  SUBARU HIGH-RESOLUTION SPECTROSCOPY OF STAR G IN THE TYCHO SUPERNOVA REMNANT , 2009, 0906.0982.

[237]  F. Millour,et al.  VLTI/AMBER observations of the Seyfert nucleus of NGC 3783 , 2012, 1204.6122.

[238]  Lifan Wang Dust around Type Ia Supernovae , 2005 .

[239]  Kevin Krisciunas,et al.  THE DISTANCE TO NGC 1316 (FORNAX A) FROM OBSERVATIONS OF FOUR TYPE Ia SUPERNOVAE , 2010, 1009.4390.

[240]  Adam G. Riess,et al.  Improved Distances to Type Ia Supernovae with Multicolor Light-Curve Shapes: MLCS2k2 , 2006 .

[241]  K. Lo MEGA-MASERS AND GALAXIES , 2005 .

[242]  Arthur D. Code,et al.  Hubble's Study of the Stellar Contnet of M31 , 1999 .

[243]  R. Holanda,et al.  Searching for cosmological signatures of the Einstein equivalence principle breaking , 2016, 1606.07923.

[244]  Philip Massey,et al.  The Progenitor Masses of Wolf-Rayet Stars and Luminous Blue Variables Determined from Cluster Turnoffs. I. Results from 19 OB Associations in the Magellanic Clouds , 2000 .

[245]  Armin Rest,et al.  Photometry of the Type Ia Supernovae 1999cc, 1999cl, and 2000cf , 2005, astro-ph/0511162.

[246]  C. Sarazin,et al.  PROPERTIES OF CLUSTERS OF GALAXIES , 1988 .

[247]  R. Minkowski,et al.  Spectra of Supernovae , 1941 .

[248]  Y. Yoshii,et al.  REVERBERATION MEASUREMENTS OF THE INNER RADIUS OF THE DUST TORUS IN 17 SEYFERT GALAXIES , 2014, 1406.2078.

[249]  J. Craig Wheeler,et al.  SELF-SHIELDING OF SOFT X-RAYS IN TYPE Ia SUPERNOVA PROGENITORS , 2012, 1208.0858.

[250]  K. Dawson,et al.  Determination of the Cosmic Distance Scale from Sunyaev-Zel’dovich Effect and Chandra X-Ray Measurements of High-Redshift Galaxy Clusters , 2005, astro-ph/0512349.

[251]  Tony Rothman The Man Behind the Curtain , 2011 .

[252]  R. Kirshner,et al.  The Type Ia Supernova Color–Magnitude Relation and Host Galaxy Dust: A Simple Hierarchical Bayesian Model , 2016, 1609.04470.

[253]  Paula Hanger,et al.  To the Death , 1950 .

[254]  V. L. Oknyanskij,et al.  On the Possibility for Measuring the Hubble Constant from Optical-to-NIR Variability Time Delay in AGNs , 2022, 2208.09295.

[255]  John L. Tonry,et al.  A new technique for measuring extragalactic distances , 1988 .

[256]  H. Tananbaum,et al.  X-Ray properties of optically selected QSOs , 1986 .

[257]  X. Chen,et al.  The helium star donor channel for the progenitors of Type Ia supernovae , 2009 .

[258]  B. A. Boom,et al.  GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. , 2017, Physical review letters.

[259]  Alberto J. Castro-Tirado,et al.  Multi-messenger Observations of a Binary Neutron Star , 2017 .

[260]  Krzysztof Hryniewicz,et al.  The origin of the broad line region in active galactic nuclei , 2010, 1010.6201.

[261]  Kevin Krisciunas,et al.  Optical and Near-Infrared Observations of the Highly Reddened, Rapidly Expanding Type Ia Supernova SN 2006X in M100 , 2007, 0708.0140.

[262]  Chen Hu,et al.  THE FUNDAMENTAL PLANE OF THE BROAD-LINE REGION IN ACTIVE GALACTIC NUCLEI , 2016, 1601.01391.

[263]  Arlin Crotts,et al.  LIGHT ECHOES FROM SUPERNOVA 2014J IN M82 , 2014, 1409.8671.

[264]  N. B. Suntzeff,et al.  Constraining Cosmic Evolution of Type Ia Supernovae , 2007, 0710.2338.

[265]  Jun Li,et al.  PHYSICAL DUST MODELS FOR THE EXTINCTION TOWARD SUPERNOVA 2014J IN M82 , 2015, 1507.00417.

[266]  Hongwei Yu,et al.  COSMOLOGICAL-MODEL-INDEPENDENT TESTS FOR THE DISTANCE–DUALITY RELATION FROM GALAXY CLUSTERS AND TYPE Ia SUPERNOVA , 2011, 1101.5255.

[267]  P. Astier,et al.  SALT : a spectral adaptive light curve template for type Ia supernovae , 2005 .

[268]  Gijs Nelemans,et al.  Theoretical Delay Time Distributions , 2011, Proceedings of the International Astronomical Union.

[269]  O. I. Wong,et al.  The SAMI Galaxy Survey: the link between angular momentum and optical morphology , 2016, 1608.00291.

[270]  Izumi Hachisu,et al.  A theoretical light-curve model for the recurrent nova V394 Coronae Australis , 2000 .

[271]  A. Wandel,et al.  Central Masses and Broad-Line Region Sizes of Active Galactic Nuclei. I. Comparing the Photoionization and Reverberation Techniques , 1999 .

[272]  W. Hillebrandt,et al.  Applying the expanding photosphere and standardized candle methods to Type II-Plateau supernovae at cosmologically significant redshifts - The distance to SN 2013eq , 2016, 1603.04730.

[273]  Adam G. Riess,et al.  Accepted for publication in The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 03/07/07 , 2022 .

[274]  B. A. Boom,et al.  GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. , 2017, Physical review letters.

[275]  Brad E. Tucker,et al.  A 2.4% DETERMINATION OF THE LOCAL VALUE OF THE HUBBLE CONSTANT , 2016, 1604.01424.

[276]  Chris L. Fryer,et al.  Common envelope evolution: where we stand and how we can move forward , 2012, The Astronomy and Astrophysics Review.

[277]  Bradley E. Schaefer,et al.  The Hubble Diagram to Redshift >6 from 69 Gamma-Ray Bursts , 2006, astro-ph/0612285.

[278]  E. Berger Short-Duration Gamma-Ray Bursts , 2013, 1311.2603.

[279]  Wendy L. Freedman,et al.  CARNEGIE HUBBLE PROGRAM: A MID-INFRARED CALIBRATION OF THE HUBBLE CONSTANT , 2012, 1208.3281.

[280]  S. Smartt,et al.  The binary progenitor of Tycho Brahe's 1572 supernova , 2004, Nature.

[281]  Lincoln Greenhill,et al.  TOWARD A NEW GEOMETRIC DISTANCE TO THE ACTIVE GALAXY NGC 4258. III. FINAL RESULTS AND THE HUBBLE CONSTANT , 2013, 1307.6031.

[282]  Z. Dai,et al.  Weak gravitational lensing effects on cosmological parameters and dark energy from gamma-ray bursts , 2011, 1112.4040.

[283]  Saul Perlmutter,et al.  Constraining Dark Energy with Type Ia Supernovae and Large-Scale Structure , 1999 .

[284]  Stefano Casertano,et al.  Type Ia Supernova Discoveries at z > 1 from the Hubble Space Telescope: Evidence for Past Deceleration and Constraints on Dark Energy Evolution , 2004, astro-ph/0402512.

[285]  R P.,et al.  MULTIWAVELENGTH MONITORING OF THE NARROW-LINE SEYFERT 1 GALAXY ARAKELIAN 564 . II . ULTRAVIOLET CONTINUUM AND EMISSION-LINE VARIABILITY , .

[286]  M. Sullivan,et al.  A Type II Supernova Hubble Diagram from the CSP-I, SDSS-II, and SNLS Surveys , 2016, 1612.05636.

[287]  Joshua S. Bloom,et al.  Gamma-Ray Bursts: The GRB–supernova connection , 2012 .

[288]  B. Schutz Determining the Hubble constant from gravitational wave observations , 1986, Nature.

[289]  R. Ellis,et al.  Measurements of $\Omega$ and $\Lambda$ from 42 high redshift supernovae , 1998, astro-ph/9812133.

[290]  Robert P. Kirshner,et al.  VELOCITY EVOLUTION AND THE INTRINSIC COLOR OF TYPE Ia SUPERNOVAE , 2011, 1107.3555.

[291]  S. Klimenko,et al.  Advanced LIGO , 2014, 1411.4547.

[292]  R. Di Stefano,et al.  SPIN-UP/SPIN-DOWN MODELS FOR TYPE Ia SUPERNOVAE , 2011, 1102.4342.

[293]  R. Itoh,et al.  OPTICAL AND NEAR-INFRARED POLARIMETRY OF HIGHLY REDDENED Type Ia SUPERNOVA 2014J: PECULIAR PROPERTIES OF DUST IN M82 , 2014, 1407.0452.

[294]  M. Chevallier,et al.  ACCELERATING UNIVERSES WITH SCALING DARK MATTER , 2000, gr-qc/0009008.

[295]  Timothy A. Davis,et al.  The MASSIVE survey - III. Molecular gas and a broken Tully-Fisher relation in the most massive early-type galaxies , 2015, 1510.00729.

[296]  T. Matheson,et al.  A SECOND CASE OF VARIABLE Na i D LINES IN A HIGHLY REDDENED TYPE Ia SUPERNOVA , 2008, 0811.0002.

[297]  D. Massa,et al.  An Analysis of the Shapes of Interstellar Extinction Curves. V. The IR-through-UV Curve Morphology , 2007, 0705.0154.

[298]  C. Badenes,et al.  IS THERE A HIDDEN HOLE IN TYPE Ia SUPERNOVA REMNANTS? , 2011, 1110.4267.

[299]  Adam G. Riess,et al.  TYPE II-P SUPERNOVAE FROM THE SDSS-II SUPERNOVA SURVEY AND THE STANDARDIZED CANDLE METHOD , 2009, 0910.5597.

[300]  M. Sullivan,et al.  Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova samples , 2014, 1401.4064.

[301]  Stefano Casertano,et al.  New Hubble Space Telescope Discoveries of Type Ia Supernovae at z ≥ 1: Narrowing Constraints on the Early Behavior of Dark Energy , 2006, astro-ph/0611572.

[302]  Makoto Kishimoto,et al.  A dust-parallax distance of 19 megaparsecs to the supermassive black hole in NGC 4151 , 2014, Nature.

[303]  C. Westhues,et al.  Photometric AGN reverberation mapping – an efficient tool for BLR sizes, black hole masses, and host-subtracted AGN luminosities , 2011, 1109.1848.

[304]  A. Rest,et al.  SPECTROSCOPY OF HIGH-REDSHIFT SUPERNOVAE FROM THE ESSENCE PROJECT: THE FIRST FOUR YEARS , 2005 .

[305]  Adam G. Riess,et al.  BVRI Light Curves for 22 Type Ia Supernovae , 1998 .

[306]  Italy,et al.  Measuring the Three-dimensional Structure of Galaxy Clusters. I. Application to a Sample of 25 Clusters , 2005, astro-ph/0502153.

[307]  J. C. Carvalho,et al.  Cosmography with the Sunyaev-Zeldovich effect and X-ray data , 2013, 1303.3307.

[308]  J. M. Moran,et al.  Toward a New Geometric Distance to the Active Galaxy NGC 4258. I. VLBI Monitoring of Water Maser Emission , 2007, astro-ph/0701396.

[309]  Izumi Hachisu,et al.  SUPERSOFT X-RAY PHASE OF SINGLE DEGENERATE TYPE Ia SUPERNOVA PROGENITORS IN EARLY-TYPE GALAXIES , 2010, 1010.5860.

[310]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[311]  Leonardo Tartaglia,et al.  The discovery of DLT17u/AT 2017cbv , 2017 .

[312]  Adam G. Riess,et al.  Determining the Motion of the Local Group Using SN Ia Light Curve Shapes , 1994 .

[313]  Rainer Schoenen,et al.  Long Term Evolution , 2009 .

[314]  In Sung Jang,et al.  The Tip of the Red Giant Branch Distance to the Perfect Spiral Galaxy M74 Hosting Three Core-Collapse Supernovae , 2014, 1407.2246.

[315]  Kevin Krisciunas,et al.  CHARACTERIZING THE V-BAND LIGHT-CURVES OF HYDROGEN-RICH TYPE II SUPERNOVAE , 2014, 1403.7091.

[316]  Wendy L. Freedman,et al.  THE CARNEGIE SUPERNOVA PROJECT: INTRINSIC COLORS OF TYPE Ia SUPERNOVAE , 2014, 1405.3934.

[317]  Stuart A. Sim,et al.  Sub-luminous type Ia supernovae from the mergers of equal-mass white dwarfs with mass ∼0.9M⊙ , 2010, Nature.

[318]  Rashid Sunyaev,et al.  Black holes in binary systems. Observational appearance , 1973 .

[319]  W. Aoki,et al.  SODIUM ABSORPTION SYSTEMS TOWARD SN Ia 2014J ORIGINATE ON INTERSTELLAR SCALES , 2015, 1511.05668.

[320]  M. M. Phillips,et al.  Near-Infrared Properties of Type Ia Supernovae , 2011, Publications of the Astronomical Society of Australia.

[321]  A. Schwarzenberg-Czerny,et al.  Towards equation of state of dark energy from quasar monitoring: Reverberation strategy , 2012, 1212.0472.

[322]  Nicholas B. Suntzeff,et al.  A Hubble diagram of distant type IA supernovae , 1993 .

[323]  Ralph Schäfermeier,et al.  Analysis of Shapes , 2004 .

[324]  Bradley M. Peterson,et al.  A NEW DIRECT METHOD FOR MEASURING THE HUBBLE CONSTANT FROM REVERBERATING ACCRETION DISCS IN ACTIVE GALAXIES , 1999 .

[325]  R. Barvainis,et al.  Hot Dust and the Near-Infrared Bump in the Continuum Spectra of Quasars and Active Galactic Nuclei , 1987 .

[326]  Lifan Wang,et al.  The Detection of a Light Echo from the Type Ia Supernova 2006X in M100 , 2007, 0711.2570.

[327]  I. Hook,et al.  Supernovae and cosmology with future European facilities , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[328]  Peter Nugent,et al.  Detailed Spectroscopic Analysis of SN 1987A: The Distance to the Large Magellanic Cloud Using the Spectral-fitting Expanding Atmosphere Method , 2002 .

[329]  M. Elvis,et al.  THE X-RAY ENERGY DEPENDENCE OF THE RELATION BETWEEN OPTICAL AND X-RAY EMISSION IN QUASARS , 2009, 0911.0474.

[330]  Douglas C. Leonard,et al.  Constraining the Type Ia Supernova Progenitor: The Search for Hydrogen in Nebular Spectra , 2006, 0710.3166.

[331]  Elisabeta Lusso,et al.  A Hubble Diagram for Quasars , 2015 .

[332]  Robert P. Kirshner,et al.  Distances to extragalactic supernovae , 1974 .

[333]  A. B. Danilet,et al.  The ASAS-SN bright supernova catalogue – I. 2013–2014 , 2016, 1604.00396.

[334]  Izumi Hachisu,et al.  A New Model for Progenitor Systems of Type Ia Supernovae , 1996 .

[335]  L. S. Collaboration,et al.  Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A , 2017 .

[336]  B. A. Boom,et al.  GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. , 2017, Physical review letters.

[337]  J. M. Moran,et al.  The Geometry of and Mass Accretion Rate through the Maser Accretion Disk in NGC 4258 , 2005 .

[338]  U. Munari,et al.  THE TYPE IIP SUPERNOVA 2012aw IN M95: HYDRODYNAMICAL MODELING OF THE PHOTOSPHERIC PHASE FROM ACCURATE SPECTROPHOTOMETRIC MONITORING , 2014, 1404.1294.

[339]  R. Ellis,et al.  Toward a Cosmological Hubble Diagram for Type II-P Supernovae , 2005, astro-ph/0603535.

[340]  Bernard F. Schutz,et al.  Physics, Astrophysics and Cosmology with Gravitational Waves , 2009, Living reviews in relativity.

[341]  E. Branchini,et al.  A NEW COSMOLOGICAL DISTANCE MEASURE USING ACTIVE GALACTIC NUCLEUS X-RAY VARIABILITY , 2014, 1404.2607.

[342]  Bradley M. Peterson,et al.  THE LOW-LUMINOSITY END OF THE RADIUS–LUMINOSITY RELATIONSHIP FOR ACTIVE GALACTIC NUCLEI , 2013, 1303.1742.

[343]  Albert Einstein,et al.  Zur allgemeinen Relativitätstheorie , 2006 .

[344]  C. D. Laney,et al.  Cepheid parallaxes and the Hubble constant , 2007, 0705.1592.

[345]  M. Phillips,et al.  The reddening-free decline rate versus luminosity relationship for type ia supernovae , 1999, astro-ph/9907052.

[346]  Maria Giovanna Dainotti,et al.  A FUNDAMENTAL PLANE FOR LONG GAMMA-RAY BURSTS WITH X-RAY PLATEAUS , 2016, 1604.06840.

[347]  Stefano Casertano,et al.  The Farthest Known Supernova: Support for an Accelerating Universe and a Glimpse of the Epoch of Deceleration , 2001, astro-ph/0104455.

[348]  Philip A. Pinto,et al.  Type II Supernovae as Standardized Candles , 2002 .

[349]  S. E. Woosley,et al.  TYPE II SUPERNOVAE: MODEL LIGHT CURVES AND STANDARD CANDLE RELATIONSHIPS , 2009, 0910.1590.

[350]  Anca Constantin,et al.  The Megamaser Cosmology Project: Survey Completion , 2015 .

[351]  Peter J. Brown,et al.  The first ten years of Swift supernovae , 2015, 1504.08017.

[352]  Wendy L. Freedman,et al.  Standard Galactic Field RR Lyrae. I. Optical to Mid-infrared Phased Photometry , 2017, 1703.01520.

[353]  Yoji Kondo,et al.  Conditions for accretion-induced collapse of white dwarfs , 1991 .

[354]  R. M. Quimby,et al.  Circumstellar Material in Type Ia Supernovae via Sodium Absorption Features , 2011, Science.

[355]  B. A. Boom,et al.  ScholarWorks @ UTRGV ScholarWorks @ UTRGV Properties of the Binary Black Hole Merger GW150914 Properties of the Binary Black Hole Merger GW150914 , 2016 .

[356]  A. Cavaliere,et al.  The Distribution of Hot Gas in Clusters of Galaxies , 1978 .

[357]  Bradley M. Peterson,et al.  Steps toward Determination of the Size and Structure of the Broad-Line Region in Active Galactic Nuclei. XIV. Intensive Optical Spectrophotometric Observations of NGC 7469 , 1998 .

[358]  W. Hillebrandt,et al.  Extensive HST ultraviolet spectra and multiwavelength observations of SN 2014J in M82 indicate reddening and circumstellar scattering by typical dust , 2014, 1405.3677.

[359]  B. J. Fulton,et al.  TIME-VARYING POTASSIUM IN HIGH-RESOLUTION SPECTRA OF THE TYPE IA SUPERNOVA 2014J , 2014, 1412.0653.

[360]  Manda Banerji,et al.  Simulations of the OzDES AGN reverberation mapping project , 2015, 1504.03031.

[361]  Francesco Marin,et al.  Einstein gravitational wave Telescope conceptual design study , 2011 .

[362]  James Liebert,et al.  X-ray studies of quasars with the Einstein observatory , 1979 .

[363]  J. Eldridge,et al.  Circumstellar dust as a solution to the red supergiant supernova progenitor problem , 2011, 1109.4637.

[364]  Andrzej Trautman,et al.  Spherical Gravitational Waves , 1960 .

[365]  Robert P. Kirshner,et al.  THE STANDARDIZED CANDLE METHOD FOR TYPE II PLATEAU SUPERNOVAE , 2010, 1004.2534.

[366]  H. Shapley,et al.  ON THE EXISTENCE OF EXTERNAL GALAXIES , 1919 .

[367]  Nathaniel R. Butler,et al.  Exclusion of a luminous red giant as a companion star to the progenitor of supernova SN 2011fe , 2011, Nature.

[368]  L. R. Yungelson,et al.  He-accreting white dwarfs: accretion regimes and final outcomes , 2014, 1409.3589.

[369]  Adam A. Miller,et al.  IMPROVED STANDARDIZATION OF TYPE II-P SUPERNOVAE: APPLICATION TO AN EXPANDED SAMPLE , 2008, 0810.4923.

[370]  P. E. Nugent,et al.  THE PECULIAR EXTINCTION LAW OF SN 2014J MEASURED WITH THE HUBBLE SPACE TELESCOPE , 2014, 1404.2595.

[371]  Marat Gilfanov,et al.  An upper limit on the contribution of accreting white dwarfs to the type Ia supernova rate , 2010, Nature.

[372]  Wei-Tou Ni Dark energy, co-evolution of massive black holes with galaxies, and ASTROD-GW , 2010 .

[373]  Chen Hu,et al.  SUPERMASSIVE BLACK HOLES WITH HIGH ACCRETION RATES IN ACTIVE GALACTIC NUCLEI. IV. Hβ TIME LAGS AND IMPLICATIONS FOR SUPER-EDDINGTON ACCRETION , 2015, 1504.01844.

[374]  Peter Nugent,et al.  Type IIP Supernovae as Cosmological Probes: A Spectral-fitting Expanding Atmosphere Model Distance to SN 1999em , 2004 .

[375]  A. Udalski,et al.  SALT long-slit spectroscopy of LBQS 2113-4538: variability of the Mg II and Fe II component , 2013, 1308.3980.

[376]  Alexei V. Filippenko,et al.  A High Intrinsic Peculiarity Rate among Type Ia Supernovae , 2000, astro-ph/0006292.

[377]  L. Szabados,et al.  Gaia Data Release 1. Testing parallaxes with local Cepheids and RR Lyrae stars , 2017, 1705.00688.

[378]  Samaya Nissanke,et al.  EXPLORING SHORT GAMMA-RAY BURSTS AS GRAVITATIONAL-WAVE STANDARD SIRENS , 2009, 0904.1017.

[379]  Armin Rest,et al.  IMPROVED DARK ENERGY CONSTRAINTS FROM ∼100 NEW CfA SUPERNOVA TYPE Ia LIGHT CURVES , 2009, 0901.4804.

[380]  T. Sakamoto,et al.  A PHOTOMETRIC REDSHIFT OF z ∼ 9.4 FOR GRB 090429B , 2011, 1105.4915.

[381]  J. Whelan,et al.  Binaries and Supernovae of Type I , 1973 .

[382]  Bradley M. Peterson,et al.  THE SLOAN DIGITAL SKY SURVEY REVERBERATION MAPPING PROJECT: FIRST BROAD-LINE Hβ AND Mg ii LAGS AT z ≳ 0.3 FROM SIX-MONTH SPECTROSCOPY , 2015, 1510.02802.

[383]  Karen M. Leighly,et al.  THE SIMULTANEOUS OPTICAL-TO-X-RAY SPECTRAL ENERGY DISTRIBUTION OF SOFT X-RAY SELECTED ACTIVE GALACTIC NUCLEI OBSERVED BY SWIFT , 2010, 1001.3140.

[384]  J. C. Lee,et al.  Measurements of the Cosmological Parameters Ω and Λ from the First Seven Supernovae at z ≥ 0.35 , 1996, astro-ph/9608192.

[385]  The Ligo Scientific Collaboration,et al.  GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral , 2017, 1710.05832.

[386]  Filippo Mannucci,et al.  Observational Clues to the Progenitors of Type Ia Supernovae , 2013, 1312.0628.

[387]  M. Bilicki,et al.  SALT long-slit spectroscopy of CTS C30.10: two-component Mg II line , 2014, 1408.1520.

[388]  G. Risaliti,et al.  THE TIGHT RELATION BETWEEN X-RAY AND ULTRAVIOLET LUMINOSITY OF QUASARS , 2016, 1602.01090.

[389]  M. C. Bentz,et al.  SPACE TELESCOPE AND OPTICAL REVERBERATION MAPPING PROJECT. III. OPTICAL CONTINUUM EMISSION AND BROADBAND TIME DELAYS IN NGC 5548 , 2015, 1510.05648.

[390]  William B. Sparks,et al.  INTERSTELLAR-MEDIUM MAPPING IN M82 THROUGH LIGHT ECHOES AROUND SUPERNOVA 2014J , 2016, 1610.02458.

[391]  European Southern Observatory,et al.  A supernova distance to the anchor galaxy NGC 4258 , 2015, 1509.00507.

[392]  John L. Tonry,et al.  The SBF survey of galaxy distances , 1997 .

[393]  Kohei Ichikawa,et al.  THE COMPLETE INFRARED VIEW OF ACTIVE GALACTIC NUCLEI FROM THE 70 MONTH SWIFT/BAT CATALOG , 2016, 1611.09858.

[394]  Stefan Hilbert,et al.  Reducing distance errors for standard candles and standard sirens with weak-lensing shear and flexion maps , 2010, 1007.2468.

[395]  G. Nelemans,et al.  Single degenerate supernova type Ia progenitors - Studying the influence of different mass retention efficiencies , 2013, 1302.2629.

[396]  Lars Bildsten,et al.  THE LONG-TERM EVOLUTION OF DOUBLE WHITE DWARF MERGERS , 2011, 1108.4036.

[397]  Xiaohui Fan,et al.  Spectroscopy in the Era of LSST , 2013, 1311.2496.

[398]  Chelsea L. MacLeod,et al.  Precision of Hubble constant derived using black hole binary absolute distances and statistical redshift information , 2007, 0712.0618.

[399]  Yick Chee Fong,et al.  Measuring the Hubble Constant , 2011 .