Formation and Evolution of Minerals in Accretion Disks and Stellar Outflows

The contribution discusses dust formation and dust processing in oxygen rich stellar outflows under non-explosive conditions, and in circumstellar discs. The main topics are calculation of solid-gas chemical equilibria, the basic concepts for calculating dust growth under non-equilibrium conditions, dust processing by annealing and solid diffusion, a discussion of non-equilibrium dust formation in stellar winds, and in particular a discussion of the composition and evolution of the mineral mixture in protoplanetary accretion discs. An overview is given over the data on dust growth, annealing, and on solid diffusion for astrophysically relevant materials available so far from laboratory experiments.

[1]  T. Posch,et al.  On the origin of the 19.5 $\mathsf{\mu}$m feature - Identifying circumstellar Mg-Fe-oxides , 2002 .

[2]  H. Gail Radial mixing in protoplanetary accretion disks IV. Metamorphosis of the silicate dust complex , 2004 .

[3]  Ernst K. Zinner,et al.  Astrophysical Implications of the Laboratory Study of Presolar Materials , 1997 .

[4]  Akihiko Hashimoto,et al.  Evaporation of single crystal forsterite: evaporation kinetics, magnesium isotope fractionation, and implications of mass-dependent isotopic fractionation of a diffusion-controlled reservoir , 1999 .

[5]  H. Gail,et al.  Comet Grains and Implications for Heating and Radial Mixing in the Protoplanetary Disk , 2006 .

[6]  J. Nuth,et al.  Evolving Optical Properties of Annealing Silicate Grains: From Amorphous Condensate to Crystalline Mineral , 2000 .

[7]  Wolfgang J. Duschl,et al.  DESTRUCTION PROCESSES FOR DUST IN PROTOPLANETARY ACCRETION DISKS , 1996 .

[8]  E. Sedlmayr,et al.  Dust formation in stellar winds. VII. Kinetic nucleation theory for chemical non-equilibrium in the gas phase , 1998 .

[9]  B. Fegley,et al.  Condensation Chemistry of Circumstellar Grains , 1999 .

[10]  L. Blitz Evolution in the interstellar medium , 2018, Dust in the Galactic Environment.

[11]  H. Gail,et al.  Radial mixing in protoplanetary accretion disks. VI. Mixing by large-scale radial flows , 2004 .

[12]  R. Keller Polyaromatic Hydrocarbons and the Condensation of Carbon in Stellar Winds , 1987 .

[13]  A. Davis,et al.  Condensation and Evaporation of Solar System Materials , 2005 .

[14]  T. Steinke,et al.  Electronic structure investigation of the Al4O4 molecule , 2000 .

[15]  H. Gail Chemical reactions in protoplanetary accretion disks IV. Multicomponent dust mixture , 1998 .

[16]  A. Tielens,et al.  Evolution of interstellar dust , 1987 .

[17]  K. Keil,et al.  Protostars and Planets V , 2007 .

[18]  E. Grün,et al.  Cosmic Dust - Near and Far , 2009 .

[19]  Edward R. D. Scott,et al.  Chondrules and the Protoplanetary Disk , 2011 .

[20]  L. Nittler,et al.  Stellar Sapphires: The Properties and Origins of Presolar Al2O3 in Meteorites , 1997 .

[21]  G. Carter The Avrami-Johnson-Mehl model, heterogeneous nucleation and ion-irradiation-induced phase changes , 1999 .

[22]  T. Blöcker Evolution on the AGB and beyond: on the formation of H-deficient post-AGB stars , 2001, astro-ph/0102135.

[23]  S. Saxena Thermodynamics of Rock-Forming Crystalline Solutions , 1973 .

[24]  Ricardo Hueso,et al.  Evolution of protoplanetary disks: Constraints from DM Tauri and GM Aurigae , 2005 .

[25]  T. Henning,et al.  Steps toward interstellar silicate mineralogy. V. Thermal Evolution of Amorphous Magnesium Silicates and Silica , 2000 .

[26]  A. Boss Mixing in the solar nebula: Implications for isotopic heterogeneity and large-scale transport of refractory grains , 2008, 0801.1622.

[27]  J. Klett,et al.  Microphysics of Clouds and Precipitation , 1978, Nature.

[28]  H. Gail,et al.  Mineral formation in stellar winds - III. Dust formation in S stars , 2002 .

[29]  B. Fegley,et al.  The Rate of Iron Sulfide Formation in the Solar Nebula , 1996 .

[30]  E. Scott,et al.  Nebula Evolution of Thermally Processed Solids: Reconciling Models and Meteorites , 2005 .

[31]  O. Regev,et al.  Asymptotic models of meridional flows in thin viscous accretion disks , 2002, astro-ph/0210293.

[32]  M. S. Matthews,et al.  Protostars & planets II , 1985 .

[33]  Andrew Putnis,et al.  An Introduction to Mineral Sciences , 1992 .

[34]  T. Kozasa,et al.  On the Origin of Crystalline Silicate in Circumstellar Envelopesof Oxygen-rich Asymptotic Giant Branch Stars , 1999 .

[35]  J. Katz,et al.  Condensation of primordial dust , 1967 .

[36]  D. Sülzle,et al.  Ab initio studies of stationary points of the AlO molecule , 1998 .

[37]  J. Larimer Chemical fractionations in meteorites—I. Condensation of the elements , 1967 .

[38]  Th. Henning,et al.  The Structure and Appearance of Protostellar Accretion Disks: Limits on Disk Flaring , 1997 .

[39]  J. Lattimer,et al.  Condensation in supernova ejecta and isotopic anomalies in meteorites , 1978 .

[40]  Sei‐ichiro Watanabe,et al.  Kinetic theory of steady chemical nucleation in the gas phase , 2001 .

[41]  E. Sedlmayr,et al.  Electronic structure investigation of neutral titanium oxide molecules TixOy , 2000 .

[42]  Atlanta,et al.  UvA-DARE ( Digital Academic Repository ) Crystalline silicate dust around evolved stars . III . A correlations study of crystalline silicate features , 2022 .

[43]  Atlanta,et al.  UvA-DARE ( Digital Academic Repository ) Crystalline silicate dust around evolved stars . II . The crystalline silicate complexes , 2022 .

[44]  J. Greenberg,et al.  Formation and Evolution of Solids in Space , 1999 .

[45]  C. Dullemond,et al.  Dust crystallinity in protoplanetary disks: the effect of diffusion/viscosity ratio , 2007, 0706.2614.

[46]  B. Fegley,et al.  Condensation chemistry of carbon stars , 1997 .

[47]  I. Barin Thermochemical data of pure substances , 1989 .

[48]  H. Nagahara,et al.  Kinetics of diffusion-controlled evaporation of Fe-Mg olivine: experimental study and implication for stability of Fe-rich olivine in the solar nebula , 2000 .

[49]  Surendra K. Saxena,et al.  Thermodynamic Data on Oxides and Silicates , 1993 .

[50]  S. Chakraborty Rates and mechanisms of Fe‐Mg interdiffusion in olivine at 980°–1300°C , 1997 .

[51]  Radial Flow of Dust Particles in Accretion Disks , 2002, astro-ph/0208552.

[52]  D. Sülzle,et al.  Ab initio thermodynamic properties for different isomers of the AlO molecule , 1999 .

[53]  Harm Jan Habing,et al.  Asymptotic giant branch stars , 2004 .

[54]  B. Fegley,et al.  The origin of circumstellar silicon carbide grains found in meteorites , 1995 .

[55]  Alan P. Boss,et al.  Evolution of the Solar Nebula. VI. Mixing and Transport of Isotopic Heterogeneity , 2004 .

[56]  C. Dominik,et al.  Processing of silicate dust grains in Herbig Ae/Be systems , 2001 .

[57]  L. Grossman Condensation in the primitive solar nebula , 1972 .

[58]  J. Ague,et al.  Principles of Igneous and Metamorphic Petrology , 2022 .

[59]  D. Lin,et al.  USING FU ORIONIS OUTBURSTS TO CONSTRAIN SELF-REGULATED PROTOSTELLAR DISK MODELS , 1993, astro-ph/9312015.

[60]  P. Bodenheimer,et al.  A NUMERICAL STUDY OF VISCOUS FLOWS IN AXISYMMETRIC ALPHA -ACCRETION DISKS , 1994 .

[61]  B. Edvardsson,et al.  The chemical evolution of the galactic disk , 1993 .

[62]  A. Tsuchiyama,et al.  An experimental study of enstatite formation reaction between forsterite and Si-rich gas , 1993 .

[63]  T. Henning,et al.  Dust Evaporation in Protostellar Cores , 1995 .

[64]  B. Fegley,et al.  Meteoritical and Astrophysical Constraints on the Oxidation State of the Solar Nebula , 2000 .

[65]  Douglas R. Gies,et al.  Carbon, Nitrogen, and Oxygen Abundances in Early B-Type Stars , 1992 .

[66]  H. Seidel Zahlenwerte und Funktionen , 1965 .

[67]  B. Fegley,et al.  Constraints on Stellar Grain Formation from Presolar Graphite in the Murchison Meteorite , 1996 .

[68]  M. Trieloff,et al.  Evolution of interstellar dust and stardust in the solar neighbourhood , 2007, 0706.1155.

[69]  G. Morfill,et al.  Transport of dust and vapor and chemical fractionation in the early protosolar cloud , 1984 .

[70]  David A. Williams,et al.  The molecular astrophysics of stars and galaxies , 1998 .

[71]  N. Boccara,et al.  Polycyclic aromatic hydrocarbons and astrophysics , 1986 .

[72]  J. Greenberg,et al.  Conditions for condensation and preservation of amorphous ice and crystallinity of astrophysical ices , 1994 .

[73]  B. Mysen,et al.  Evaporation of olivine: Low pressure phase relations of the olivine system and its implication for the origin of chondritic components in the solar nebula , 1994 .

[74]  C. Tang,et al.  Laboratory investigation of crystallisation in annealed amorphous MgSiO$\mathsf{_{3}}$ , 2001 .

[75]  Peter R. Buseck,et al.  MATRICES OF CARBONACEOUS CHONDRITE METEORITES , 1993 .

[76]  P. Buseck,et al.  Fe‐Mg lattice diffusion in olivine , 1973 .

[77]  A. Tielens Interstellar Depletions and the Life Cycle of Interstellar Dust , 1998 .

[78]  J. P. Laboratory,et al.  Ice lines, planetesimal composition and solid surface density in the solar nebula , 2008, 0806.3788.

[79]  H. Gail,et al.  Inorganic dust formation in astrophysical environments , 1998 .

[80]  W. F. Huebner,et al.  Molecular equilibrium with condensation. [in astrophysics] , 1990 .

[81]  M. Payne,et al.  Formation and Evolution of Planetary Systems , 2010 .

[82]  H. Gail,et al.  2-D preplanetary accretion disks I. Hydrodynamics, chemistry, and mixing processes , 2007 .

[83]  K. Lodders,et al.  Landolt-Börnstein, New Series, Astronomy and Astrophysics, Springer Verlag, Berlin, 2009 , 2009 .

[84]  S. Weinbruch,et al.  On the lower limit of chondrule cooling rates: The significance of iron loss in dynamic crystallization experiments , 1998 .

[85]  D. Lin,et al.  The global evolution of the primordial solar nebula , 1986 .

[86]  J. Nuth,et al.  Vapor Pressure of Silicon Monoxide , 2008 .

[87]  H. Gail Radial mixing in protoplanetary accretion disks - I. Stationary disc models with annealing and carbon combustion , 2001 .

[88]  C. Allen,et al.  Microscopic Iron Metal on Glass and Minerals—A Tool for Studying Regolith Maturity , 1993 .

[89]  The Global Baroclinic Instability in Accretion Disks. II. Local Linear Analysis , 2004, astro-ph/0401449.

[90]  D. Rubie,et al.  Mg tracer diffusion in synthetic forsterite and San Carlos olivine as a function of P, T and fO2 , 1994 .

[91]  A. Boothroyd,et al.  The CNO Isotopes: Deep Circulation in Red Giants and First and Second Dredge-up , 1995, astro-ph/9512121.

[92]  K. Tamm Landolt‐Börnstein: Zahlenwerte und Funktionen aus Naturwissenschaft und Technik. Gruppe II: Atom‐ und Molekularphysik. Bd. 5: Molekularakustik. Von W. Schaaffs, Herausgeber: K.‐H. Hellwege und A. M. Hellwege. Springer‐Verlag, Berlin‐Heidelberg‐New York 1967. 286 Seiten. Preis: DM 156.– , 1968 .

[93]  F. Rietmeijer,et al.  Metastable eutectic gas to solid condensation in the Al2O3–SiO2 system , 1999 .

[94]  University College London,et al.  Crystalline silicate dust around evolved stars. I. The sample stars , 2002, astro-ph/0201303.

[95]  Hermann Schmalzried,et al.  Chemical Kinetics of Solids , 1997 .

[96]  Turbulence in Accretion Disks: Vorticity Generation and Angular Momentum Transport via the Global Baroclinic Instability , 2002, astro-ph/0211629.

[97]  E. Anders,et al.  Meteorites and the Early Solar System , 1971 .

[98]  M. Morioka Cation diffusion in olivine—I. Cobalt and magnesium , 1980 .

[99]  H. Gail,et al.  Mineral formation in stellar winds. IV. Formation of magnesiowüstite , 2003 .

[100]  A. Tielens,et al.  Polycyclic aromatic hydrocarbon formation in carbon-rich stellar envelopes , 1992 .

[101]  A. Hashimoto Evaporation kinetics of forsterite and implications for the early solar nebula , 1990, Nature.

[102]  F. Ciesla Two-dimensional transport of solids in viscous protoplanetary disks , 2008, 0812.3916.

[103]  R. Wirth,et al.  Growth kinetics of enstatite reaction rims studied on nano-scale, Part I: Methodology, microscopic observations and the role of water , 2007 .

[104]  A. Tsuchiyama,et al.  Incongruent evaporation of troilite (FeS) in the primordial solar nebula: an experimental study , 1998 .

[105]  N. Grevesse,et al.  Abundances of the elements: Meteoritic and solar , 1989 .

[106]  H. Gail,et al.  Dust formation in stellar winds. IV: Heteromolecular carbon grain formation and growth , 1988 .

[107]  E. Salpeter Nucleation and Growth of Dust Grains (Abstract) , 1974 .

[108]  D. Lin,et al.  Two-dimensional viscous accretion disk models. I - On meridional circulations in radiative regions , 1992 .

[109]  J. Pollack,et al.  Composition and radiative properties of grains in molecular clouds and accretion disks , 1994 .

[110]  Turbulent Radial Mixing in the Solar Nebula as the Source of Crystalline Silicates in Comets , 2000 .

[111]  A. Boss,et al.  Protostars and Planets VI , 2000 .

[112]  J. Nuth,et al.  Metastable eutectic, gas to solid, condensation in the FeO–Fe2O3–SiO2 system , 1999 .

[113]  H. Gail,et al.  Radial mixing in protoplanetary accretion disks VII. 2-dimensional transport of tracers , 2008, 0804.3377.

[114]  E. Sedlmayr,et al.  Formation of dust particles in cool stellar outflows , 1997 .

[115]  A. Tsuchiyama,et al.  Evaporation of forsterite in the primordial solar nebula; rates and accompanied isotopic fractionation , 1999 .

[116]  M. W. Chase NIST-JANAF thermochemical tables , 1998 .

[117]  R. Clayton,et al.  Chemical, isotopic and mineralogical evidence for the origin of matrix in ordinary chondrites , 1989 .

[118]  E. Feigelson,et al.  Formation of polycyclic aromatic hydrocarbons in circumstellar envelopes , 1989 .

[119]  R. Freer Diffusion in silicate minerals and glasses: A data digest and guide to the literature , 1981 .

[120]  T. Kozasa,et al.  Formation of crystalline silicate around oxygen-rich AGB stars , 1999 .

[121]  M. Morioka Cation diffusion in olivine—II. Ni-Mg, Mn-Mg, Mg and Ca , 1981 .

[122]  H. Gail,et al.  Radial mixing in protoplanetary accretion disks II. Time dependent disk models with annealing and carbon combustion , 2002 .

[123]  B. Fegley,et al.  Experimental studies of magnetite formation in the solar nebula , 1998 .

[124]  J. Lattanzio,et al.  Nucleosynthesis in AGB Stars , 1999 .

[125]  J. Kerridge What can meteorites tell us about nebular conditions and processes during planetesimal accretion? , 1993, Icarus.

[126]  C. Woodward,et al.  Silicate Mineralogy of the Dust in the Inner Coma of Comet C/1995 01 (Hale-Bopp) Pre- and Postperihelion , 1999 .

[127]  S. Saxena Chemistry and physics of terrestrial planets , 1986 .

[128]  Mineralization, Grain Growth and Disk Structure: Observations of the Evolution of Dust in Protoplanetary Disk , 2009, 0902.2744.

[129]  Michel Casse,et al.  Origin and evolution of the elements , 1993 .

[130]  A. Johansen,et al.  Dust Diffusion in Protoplanetary Disks by Magnetorotational Turbulence , 2005, astro-ph/0501641.

[131]  B. Draine Time-dependent nucleation theory and the formation of interstellar grains , 1979 .

[132]  R. C. Gilman On the composition of circumstellar grains. , 1969 .

[133]  A. Tielens,et al.  The Absence of Crystalline Silicates in the Diffuse Interstellar Medium , 2004, astro-ph/0403609.

[134]  P. Daukantas,et al.  Mid-Infrared Spectral Evolution of Amorphous Magnesium Silicate Smokes Annealed in Vacuum: Comparison to Cometary Spectra , 1998 .

[135]  O. J. Kleppa,et al.  Thermochemistry of forsterite-fayalite olivine solutions , 1981 .

[136]  A. Tielens,et al.  Destruction of Interstellar Dust , 1997 .

[137]  H. Nagahara,et al.  Evaporation of forsterite in H2 gas , 1996 .

[138]  R. Prinn,et al.  Solar nebula chemistry - Implications for volatiles in the solar system , 1989 .

[139]  D. Ebel,et al.  Condensation in dust-enriched systems , 2023, 2307.00641.

[140]  J. Lunine,et al.  Protostars and planets III , 1993 .

[141]  G. Eriksson,et al.  Chemistry of the Formation of the Terrestrial Planets , 1986 .

[142]  J. Brucato,et al.  Mid-infrared spectral evolution of thermally annealed amorphous pyroxene , 1999 .

[143]  A. Klügel Prolonged reactions between harzburgite xenoliths and silica-undersaturated melt: implications for dissolution and Fe-Mg interdiffusion rates of orthopyroxene , 2001 .

[144]  A. Rubin Mineralogy of meteorite groups , 1997 .

[145]  H. Westrich,et al.  Magnesium self-diffusion in orthoenstatite , 1998 .

[146]  G. Wasserburg,et al.  Molecular equilibria and condensation temperatures in carbon-rich gases , 1995 .

[147]  H. Gail,et al.  Mineral formation in stellar winds. II. Effects of Mg/Si abundance variations on dust composition in AGB stars , 2001 .

[148]  A. Tsuchiyama,et al.  Experimental study of incongruent evaporation kinetics of enstatite in vacuum and in hydrogen gas , 2002 .

[149]  C. Soubiran,et al.  Abundance trends in kinematical groups of the Milky Way's disk , 2005, astro-ph/0503498.

[150]  S. Weidenschilling,et al.  Formation of planetesimals in the solar nebula , 1993 .

[151]  C. Woodward,et al.  Mg-Rich Silicate Crystals in Comet Hale–Bopp: ISM Relics or Solar Nebula Condensates? , 2000 .

[152]  D. J. Barber,et al.  Primitive material surviving in chondrites - Matrix , 1988 .

[153]  B. Mysen,et al.  Experimental vaporization and condensation of olivine solid solution , 1988, Nature.

[154]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .

[155]  Elizabeth A. Lada,et al.  Disk Frequencies and Lifetimes in Young Clusters , 2001, astro-ph/0104347.

[156]  M. W. Chase NIST–JANAF Thermochemical Tables for the Bromine Oxides , 1996 .

[157]  F. Herwig Evolution of Asymptotic Giant Branch Stars , 2005 .

[158]  G. Libourel,et al.  Laboratory condensation of refractory dust in protosolar and circumstellar conditions , 2006 .

[159]  H. Gail,et al.  Radial mixing in protoplanetary accretion disks. V. Models with different element mixtures , 2003 .

[160]  A. Davis,et al.  Formation of an unusual compact Type A refractory inclusion from Allende , 1998 .