A φ1,3-Filtration of the Virasoro Minimal Series M(p, p') with 1 < p'/p < 2

The filtration of the Virasoro minimal series representations M (p,p ′) r,s induced by the (1, 3)-primary field φ1,3(z) is studied. For 1 < p ′ /p < 2, a conjectural basis of M (p,p ′) r,s compatible with the filtration is given by using monomial vectors in terms of the Fourier coefficients of φ1,3(z). In support of this conjecture, we give two results. First, we establish the equality of the character of the conjectural basis vectors with the character of the whole representation space. Second, for the unitary series (p ′ = p + 1), we establish for each m the equality between the character of the degree m monomial basis and the character of the degree m component in the associated graded module Gr(M (p,p+1) r,s) with respect to the filtration defined by φ1,3(z).

[1]  G. Fourier,et al.  Weyl modules, affine Demazure modules, fusion products and limit constructions , 2005 .

[2]  M. Jimbo,et al.  Sets of rigged paths with Virasoro characters , 2005, math/0506150.

[3]  A. Kirillov,et al.  Combinatorics and Geometry of Higher Level Weyl Modules , 2005, math/0503315.

[4]  B. Feigin,et al.  Homological realization of restricted Kostka polynomials , 2005 .

[5]  M. Jimbo,et al.  Spaces of coinvariants and fusion product II. sl2 character formulas in terms of Kostka polynomials , 2004 .

[6]  M. Jimbo,et al.  A Monomial Basis for the Virasoro Minimal Series M(p,p′) : The Case 1 , 2004, math/0405468.

[7]  R. Kedem Fusion products, cohomology of GLN flag manifolds, and Kostka polynomials , 2003, math/0312478.

[8]  B. Feigin,et al.  Schubert varieties and the fusion products , 2003 .

[9]  Shrawan Kumar,et al.  Kac-Moody Groups, their Flag Varieties and Representation Theory , 2002 .

[10]  A. Schilling,et al.  Fermionic Formulas for Level-Restricted Generalized Kostka Polynomials and Coset Branching Functions , 2000, math/0001114.

[11]  Pierre Mathieu,et al.  Conformal Field Theory , 1999 .

[12]  B. Feigin,et al.  On generalized Kostka polynomials and quantum Verlinde rule , 1998, math/9812093.

[13]  A. Schilling,et al.  Supernomial Coefficients, Polynomial Identities and q-Series , 1997, q-alg/9701007.

[14]  A. Berkovich Fermionic counting of RSOS states and Virasoro character formulas for the unitary minimal series M(v,v + 1): Exact results , 1994, hep-th/9403073.

[15]  M. Lashkevich COSET CONSTRUCTION SU(2)k × SU(2)l/SU(2)k+l AND MINIMAL-LIKE THEORIES , 1993 .

[16]  V. Dotsenko,et al.  Conformal Algebra and Multipoint Correlation Functions in 2d Statistical Models - Nucl. Phys. B240, 312 (1984) , 1984 .

[17]  George E. Andrews,et al.  Eight-vertex SOS model and generalized Rogers-Ramanujan-type identities , 1984 .

[18]  I. Stewart,et al.  Infinite-dimensional Lie algebras , 1974 .

[19]  E. Feigin Q-CHARACTERS OF THE TENSOR PRODUCTS IN sl2-CASE , 2002 .

[20]  Adrian Kent,et al.  Unitary representations of the Virasoro and super-Virasoro algebras , 1986 .

[21]  B. Feigin,et al.  Integrable Sl 2 -modules as Infinite Tensor Products , 2022 .