Twin nucleation and variant selection in Mg alloys: An integrated crystal plasticity modelling and experimental approach

[1]  Yanjun Li,et al.  Revealing slip-induced extension twinning behaviors dominated by micro deformation in a magnesium alloy , 2020 .

[2]  F. Dunne,et al.  The dislocation configurational energy density in discrete dislocation plasticity , 2019, Journal of the Mechanics and Physics of Solids.

[3]  I. Beyerlein,et al.  Microstructure insensitive twinning: A statistical analysis of incipient twins in high-purity titanium , 2019, Materialia.

[4]  W. M. Rainforth,et al.  Basal slip mediated tension twin variant selection in magnesium WE43 alloy , 2019, Acta Materialia.

[5]  F. Dunne,et al.  Microstructurally-sensitive fatigue crack growth in HCP, BCC and FCC polycrystals , 2019, Journal of the Mechanics and Physics of Solids.

[6]  Anand K. Kanjarla,et al.  A crystal plasticity FFT based study of deformation twinning, anisotropy and micromechanics in HCP materials: Application to AZ31 alloy , 2019, International Journal of Plasticity.

[7]  R. Konetschnik,et al.  In-situ TEM observation of {101¯2} twin-dominated deformation of Mg pillars: Twinning mechanism, size effects and rate dependency , 2018, Acta Materialia.

[8]  A. Wilkinson,et al.  Quantitative investigation of micro slip and localization in polycrystalline materials under uniaxial tension , 2018, International Journal of Plasticity.

[9]  Wei Ding,et al.  An integrated crystal plasticity–phase field model for spatially resolved twin nucleation, propagation, and growth in hexagonal materials , 2018, International Journal of Plasticity.

[10]  F. Dunne,et al.  Is stored energy density the primary meso-scale mechanistic driver for fatigue crack nucleation? , 2018 .

[11]  I. Beyerlein,et al.  Effect of dislocation density-twin interactions on twin growth in AZ31 as revealed by explicit crystal plasticity finite element modeling , 2017 .

[12]  F. Dunne,et al.  Microstructurally-sensitive fatigue crack nucleation in Ni-based single and oligo crystals , 2017 .

[13]  W. M. Rainforth,et al.  Individual effect of recrystallisation nucleation sites on texture weakening in a magnesium alloy: Part 1- double twins , 2017 .

[14]  R. Mccabe,et al.  Experimentally quantifying critical stresses associated with basal slip and twinning in magnesium using micropillars , 2017 .

[15]  A. Wilkinson,et al.  Growth of {112¯2} twins in titanium: A combined experimental and modelling investigation of the local state of deformation , 2017 .

[16]  W. M. Rainforth,et al.  Twin recrystallization mechanisms and exceptional contribution to texture evolution during annealing in a magnesium alloy , 2017 .

[17]  Somnath Ghosh,et al.  Crystal plasticity finite element modeling of discrete twin evolution in polycrystalline magnesium , 2017 .

[18]  William J. Joost,et al.  Towards magnesium alloys for high-volume automotive applications , 2017 .

[19]  I. Beyerlein,et al.  Grain neighbour effects on twin transmission in hexagonal close-packed materials , 2016, Nature Communications.

[20]  Qing Liu,et al.  The mechanism of twinning activation and variant selection in magnesium alloys dominated by slip deformation , 2016 .

[21]  M. Barnett,et al.  Modeling of twin formation, propagation and growth in a Mg single crystal based on crystal plasticity finite element method , 2016 .

[22]  W. Whittington,et al.  Demonstration of alloying, thermal activation, and latent hardening effects on quasi-static and dynamic polycrystal plasticity of Mg alloy, WE43-T5, plate , 2016 .

[23]  M. Preuss,et al.  A study of deformation twinning in a titanium alloy by X-ray diffraction contrast tomography , 2016 .

[24]  G. Gottstein,et al.  On the role of anomalous twinning in the plasticity of magnesium , 2016 .

[25]  K. Inal,et al.  A review on the effect of rare-earth elements on texture evolution during processing of magnesium alloys , 2016, Journal of Materials Science.

[26]  Qing Liu,et al.  Geometrical compatibility factor analysis of paired extension twins in extruded Mg–3Al–1Zn alloys , 2015 .

[27]  D. Fullwood,et al.  Nucleation and propagation of { 101¯2} twins in AZ31 magnesium alloy , 2015 .

[28]  M. Horstemeyer,et al.  Geometrically necessary twins in bending of a magnesium alloy , 2015 .

[29]  A. Wilkinson,et al.  Measurements of stress fields near a grain boundary: Exploring blocked arrays of dislocations in 3D , 2015 .

[30]  Somnath Ghosh,et al.  A crystal plasticity FE model for deformation with twin nucleation in magnesium alloys , 2015 .

[31]  C. Tomé,et al.  Why are {101¯2} twins profuse in magnesium? , 2015 .

[32]  D. Lloyd,et al.  A constitutive model of twin nucleation, propagation and growth in magnesium crystals , 2015 .

[33]  R. Lebensohn,et al.  Numerical study of the stress state of a deformation twin in magnesium , 2015 .

[34]  Fionn P.E. Dunne,et al.  A stored energy criterion for fatigue crack nucleation in polycrystals , 2014 .

[35]  M. Diehl,et al.  In situ observation of collective grain-scale mechanics in Mg and Mg–rare earth alloys , 2014 .

[36]  T. Bieler,et al.  Grain boundaries and interfaces in slip transfer , 2014 .

[37]  Qing Liu,et al.  Understanding of variant selection and twin patterns in compressed Mg alloy sheets via combined analysis of Schmid factor and strain compatibility factor , 2014 .

[38]  Jian Wang,et al.  A crystal plasticity model for hexagonal close packed (HCP) crystals including twinning and de-twinning mechanisms , 2013 .

[39]  M. Ghazisaeidi,et al.  Analysis of dissociation of 〈c〉 and 〈c + a〉 dislocations to nucleate twins in Mg , 2013 .

[40]  M. Daymond,et al.  Multi-scale modeling and experimental study of twin inception and propagation in hexagonal close-packed materials using a crystal plasticity finite element approach—Part I: Average behavior , 2013 .

[41]  A. Wilkinson,et al.  Measurement of geometrically necessary dislocation density with high resolution electron backscatter diffraction: effects of detector binning and step size. , 2013, Ultramicroscopy.

[42]  S. Agnew,et al.  Texture Weakening Effects in Ce-Containing Mg Alloys , 2013, Metallurgical and Materials Transactions A.

[43]  A. Wilkinson,et al.  Crystal plasticity analysis of micro-deformation, lattice rotation and geometrically necessary dislocation density , 2012, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[44]  W. Liu,et al.  Extension twin variant selection during uniaxial compression of a magnesium alloy , 2012 .

[45]  S. Chaudhuri,et al.  Atoms‐to‐Grains Corrosion Modeling for Magnesium Alloys , 2012 .

[46]  M. Philippe,et al.  Variant selection criterion for twin variants in titanium alloys deformed by rolling , 2012 .

[47]  Jianguo Lin,et al.  Controlled Poisson Voronoi tessellation for virtual grain structure generation: a statistical evaluation , 2011 .

[48]  I. Beyerlein,et al.  Effect of microstructure on the nucleation of deformation twins in polycrystalline high-purity magnesium: A multi-scale modeling study , 2011 .

[49]  X. Li,et al.  Sheet texture modification in magnesium-based alloys by selective rare earth alloying , 2011 .

[50]  J. Jonas,et al.  The role of strain accommodation during the variant selection of primary twins in magnesium , 2011 .

[51]  Yujie Wei The kinetics and energetics of dislocation mediated de-twinning in nano-twinned face-centered cubic metals , 2011 .

[52]  D. Tromans ELASTIC ANISOTROPY OF HCP METAL CRYSTALS AND POLYCRYSTALS , 2011 .

[53]  C. Tomé,et al.  Evaluation of self-consistent polycrystal plasticity models for magnesium alloy AZ31B sheet , 2010 .

[54]  M. Niewczas Lattice correspondence during twinning in hexagonal close-packed crystals , 2010 .

[55]  K. Kainer,et al.  Effect of rare earth additions on microstructure and texture development of magnesium alloy sheets , 2010 .

[56]  T. Bieler,et al.  Nucleation of paired twins at grain boundaries in titanium , 2010 .

[57]  Laurent Capolungo,et al.  Statistical analyses of deformation twinning in magnesium , 2010 .

[58]  Huajian Gao,et al.  Dislocation nucleation governed softening and maximum strength in nano-twinned metals , 2010, Nature.

[59]  I. Beyerlein,et al.  A probabilistic twin nucleation model for HCP polycrystalline metals , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[60]  Laurent Capolungo,et al.  Nucleation and growth of twins in Zr: A statistical study , 2009 .

[61]  Jian Wang,et al.  Nucleation of a (1¯012) twin in hexagonal close-packed crystals , 2009 .

[62]  Jian Wang,et al.  (1¯012) Twinning nucleation mechanisms in hexagonal-close-packed crystals , 2009 .

[63]  Gwénaëlle Proust,et al.  Modeling the effect of twinning and detwinning during strain-path changes of magnesium alloy AZ31 , 2009 .

[64]  M. Pekguleryuz,et al.  The recrystallization and texture of magnesium–zinc–cerium alloys , 2008 .

[65]  I. Beyerlein,et al.  Nucleation and stability of twins in hcp metals , 2008 .

[66]  J. G. Sevillano Geometrically necessary twins and their associated size effects , 2008 .

[67]  Wei Liu,et al.  Identification and analysis of twinning variants during compression of a Mg–Al–Zn alloy , 2008 .

[68]  F. Dunne,et al.  Lengthscale-dependent, elastically anisotropic, physically-based hcp crystal plasticity: Application to cold-dwell fatigue in Ti alloys , 2007 .

[69]  S. Agnew,et al.  The texture and anisotropy of magnesium–zinc–rare earth alloy sheets , 2007 .

[70]  O. Bouaziz,et al.  Ensemble averaging stress–strain fields in polycrystalline aggregates with a constrained surface microstructure – Part 2: crystal plasticity , 2007 .

[71]  J. Bohlen,et al.  Cold rolling textures in AZ31 wrought magnesium alloy , 2004 .

[72]  D. Parks,et al.  Crystallographic aspects of geometrically-necessary and statistically-stored dislocation density , 1999 .

[73]  M. Morris,et al.  Compatibility of deformation in two-phase Ti-Al alloys: Dependence on microstructure and orientation relationships , 1995 .

[74]  R. Raj,et al.  The role of residual dislocation arrays in slip induced cavitation, migration and dynamic recrystallization at grain boundaries , 1985 .

[75]  S. Mendelson,et al.  Zonal dislocations and twin lamellae in h.c.p. metals , 1969 .

[76]  P. G. Partridge The crystallography and deformation modes of hexagonal close-packed metals , 1967 .

[77]  B. Chalmers,et al.  Multiple slip in bicrystal deformation , 1957 .

[78]  F. Frank,et al.  On deformation by twinning , 1955 .

[79]  Frank Reginald Nunes Nabarro,et al.  Mathematical theory of stationary dislocations , 1952 .