Databases and Archiving for CryoEM.

CryoEM in structural biology is currently served by three public archives-EMDB for 3DEM reconstructions, PDB for models built from 3DEM reconstructions, and EMPIAR for the raw 2D image data used to obtain the 3DEM reconstructions. These archives play a vital role for both the structural community and the wider biological community in making the data accessible so that results may be reused, reassessed, and integrated with other structural and bioinformatics resources. The important role of the archives is underpinned by the fact that many journals mandate the deposition of data to PDB and EMDB on publication. The field is currently undergoing transformative changes where on the one hand high-resolution structures are becoming a routine occurrence while on the other hand electron tomography is enabling the study of macromolecules in the cellular context. Concomitantly the archives are evolving to best serve their stakeholder communities. In this chapter, we describe the current state of the archives, resources available for depositing, accessing, searching, visualizing and validating data, on-going community-wide initiatives and opportunities, and challenges for the future.

[1]  Wolfgang Baumeister,et al.  The three-dimensional organization of polyribosomes in intact human cells. , 2010, Molecular cell.

[2]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[3]  Ardan Patwardhan,et al.  Collaborative Computational Project for Electron cryo-Microscopy , 2015, Acta crystallographica. Section D, Biological crystallography.

[4]  Gerard J. Kleywegt,et al.  Web-based visualisation and analysis of 3D electron-microscopy data from EMDB and PDB , 2013, Journal of structural biology.

[5]  Wah Chiu,et al.  The 2010 cryo‐em modeling challenge , 2012, Biopolymers.

[6]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[7]  Robert M Glaeser,et al.  Replication and validation of cryo-EM structures. , 2013, Journal of structural biology.

[8]  M. Baker,et al.  Outcome of the First Electron Microscopy Validation Task Force Meeting , 2012, Structure.

[9]  Kenneth H. Downing,et al.  Structure of the αβ tubulin dimer by electron crystallography , 1998, Nature.

[10]  Roberto Marabini,et al.  The Electron Microscopy eXchange (EMX) initiative. , 2016, Journal of structural biology.

[11]  Randy J. Read,et al.  A New Generation of Crystallographic Validation Tools for the Protein Data Bank , 2011, Structure.

[12]  D. Mastronarde,et al.  Data management challenges in three-dimensional EM , 2012, Nature Structural &Molecular Biology.

[13]  Haruki Nakamura,et al.  Outcome of the First wwPDB Hybrid/Integrative Methods Task Force Workshop. , 2015, Structure.

[14]  John A.G. Briggs,et al.  Plasma Membrane Reshaping during Endocytosis Is Revealed by Time-Resolved Electron Tomography , 2012, Cell.

[15]  Michele Vendruscolo,et al.  Atomic structure and hierarchical assembly of a cross-β amyloid fibril , 2013, Proceedings of the National Academy of Sciences.

[16]  Sameer Velankar,et al.  PDBe: Protein Data Bank in Europe , 2010, Nucleic Acids Res..

[17]  Richard Henderson,et al.  Avoiding the pitfalls of single particle cryo-electron microscopy: Einstein from noise , 2013, Proceedings of the National Academy of Sciences.

[18]  B. Chait,et al.  The molecular architecture of the nuclear pore complex , 2007, Nature.

[19]  Sameer Velankar,et al.  Implementing an X-ray validation pipeline for the Protein Data Bank , 2012, Acta crystallographica. Section D, Biological crystallography.

[20]  John D. Westbrook,et al.  EMDataBank.org: unified data resource for CryoEM , 2010, Nucleic Acids Res..

[21]  T. Zeev-Ben-Mordehai,et al.  A cool hybrid approach to the herpesvirus ‘life’ cycle☆ , 2014, Current opinion in virology.

[22]  Sriram Subramaniam,et al.  Structure of trimeric HIV-1 envelope glycoproteins , 2013, Proceedings of the National Academy of Sciences.

[23]  Wen Jiang,et al.  CTF Challenge: Result summary. , 2015, Journal of structural biology.

[24]  Anchi Cheng,et al.  Automated molecular microscopy: the new Leginon system. , 2005, Journal of structural biology.

[25]  Marin van Heel,et al.  Finding trimeric HIV-1 envelope glycoproteins in random noise , 2013 .

[26]  David N Mastronarde,et al.  Automated electron microscope tomography using robust prediction of specimen movements. , 2005, Journal of structural biology.

[27]  M. Heel,et al.  Exact filters for general geometry three dimensional reconstruction , 1986 .

[28]  Nicholas K. Sauter,et al.  Structure of the toxic core of α-synuclein from invisible crystals , 2015, Nature.

[29]  D. Kriegman,et al.  Automatic particle selection: results of a comparative study. , 2004, Journal of structural biology.

[30]  Wen Jiang,et al.  EMAN2: an extensible image processing suite for electron microscopy. , 2007, Journal of structural biology.

[31]  John D. Westbrook,et al.  EMDataBank unified data resource for 3DEM , 2013, Nucleic Acids Res..

[32]  Richard Henderson,et al.  Tilt-Pair Analysis of Images from a Range of Different Specimens in Single-Particle Electron Cryomicroscopy , 2011, Journal of molecular biology.

[33]  Roberto Marabini,et al.  MRC2014: Extensions to the MRC format header for electron cryo-microscopy and tomography , 2015, Journal of structural biology.

[34]  S. Harrison,et al.  Lipid–protein interactions in double-layered two-dimensional AQP0 crystals , 2005, Nature.

[35]  Sebastian Wasilewski,et al.  Web server for tilt-pair validation of single particle maps from electron cryomicroscopy. , 2014, Journal of structural biology.

[36]  K. Henrick,et al.  New electron microscopy database and deposition system. , 2002, Trends in biochemical sciences.

[37]  David I. Stuart,et al.  A national facility for biological cryo-electron microscopy , 2015, Acta crystallographica. Section D, Biological crystallography.

[38]  J Bernard Heymann,et al.  Bsoft: image processing and molecular modeling for electron microscopy. , 2007, Journal of structural biology.

[39]  Erik Franken,et al.  A 3D cellular context for the macromolecular world , 2014, Nature Structural &Molecular Biology.

[40]  R. Henderson,et al.  Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. , 2003, Journal of molecular biology.

[41]  W. Baumeister,et al.  Cryo-EM single particle analysis with the Volta phase plate , 2016, eLife.

[42]  G. Montelione,et al.  Recommendations of the wwPDB NMR Validation Task Force. , 2013, Structure.

[43]  Gerard J. Kleywegt,et al.  Web-based volume slicer for 3D electron-microscopy data from EMDB , 2016, Journal of structural biology.

[44]  Haruki Nakamura,et al.  Announcing the worldwide Protein Data Bank , 2003, Nature Structural Biology.

[45]  Ardan Patwardhan,et al.  EMPIAR: a public archive for raw electron microscopy image data , 2016, Nature Methods.

[46]  Sjors H.W. Scheres,et al.  RELION: Implementation of a Bayesian approach to cryo-EM structure determination , 2012, Journal of structural biology.

[47]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[48]  Haruki Nakamura,et al.  The Protein Data Bank at 40: reflecting on the past to prepare for the future. , 2012, Structure.