Virus-based nanocarriers for drug delivery.

[1]  J. Kaper ALKALINE DEGRADATION OF TURNIP YELLOW MOSAIC VIRUS. I. THE CONTROLLED FORMATION OF EMPTY PROTEIN SHELLS. , 1964, Biochemistry.

[2]  Effect of freezing and thawing on the structure of turnip yellow mosaic virus. , 2005, European journal of biochemistry.

[3]  I. K. Robinson,et al.  Structure of the expanded state of tomato bushy stunt virus , 1982, Nature.

[4]  P. Sorger,et al.  Structure and assembly of turnip crinkle virus. II. Mechanism of reassembly in vitro. , 1986, Journal of molecular biology.

[5]  Carl O. Pabo,et al.  Cellular uptake of the tat protein from human immunodeficiency virus , 1988, Cell.

[6]  Lars Liljas,et al.  The three-dimensional structure of the bacterial virus MS2 , 1990, Nature.

[7]  L. Gold,et al.  Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. , 1990, Science.

[8]  J. Szostak,et al.  In vitro selection of RNA molecules that bind specific ligands , 1990, Nature.

[9]  A. Bacher,et al.  The lumazine synthase-riboflavin synthase complex of Bacillus subtilis. Crystallization of reconstituted icosahedral beta-subunit capsids. , 1990, The Journal of biological chemistry.

[10]  Stephen Mann,et al.  Synthesis of inorganic nanophase materials in supramolecular protein cages , 1991, Nature.

[11]  L. Liljas,et al.  Crystallization and preliminary X-ray diffraction studies of the bacteriophage Qbeta. , 1994, Acta crystallographica. Section D, Biological crystallography.

[12]  J Barsoum,et al.  Tat-mediated delivery of heterologous proteins into cells. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[13]  John E. Johnson,et al.  Structures of the native and swollen forms of cowpea chlorotic mottle virus determined by X-ray crystallography and cryo-electron microscopy. , 1995, Structure.

[14]  G J Strous,et al.  Endocytosis of GPI-linked membrane folate receptor-alpha , 1996, The Journal of cell biology.

[15]  P. Pumpens,et al.  RNA Phage Qβ Coat Protein as a Carrier for Foreign Epitopes , 1996 .

[16]  D. Brough,et al.  Increased in vitro and in vivo gene transfer by adenovirus vectors containing chimeric fiber proteins , 1997, Journal of virology.

[17]  P. Pumpens,et al.  Mosaic Qβ coats as a new presentation model , 1998 .

[18]  R. Langer,et al.  Drug delivery and targeting. , 1998, Nature.

[19]  Sung-Hou Kim,et al.  Crystal structure of a small heat-shock protein , 1998, Nature.

[20]  Trevor Douglas,et al.  Host–guest encapsulation of materials by assembled virus protein cages , 1998, Nature.

[21]  J. V. van Lier,et al.  Metal complexes as photo- and radiosensitizers. , 1999, Chemical reviews.

[22]  M. Perricaudet,et al.  RGD Inclusion in the Hexon Monomer Provides Adenovirus Type 5-Based Vectors with a Fiber Knob-Independent Pathway for Infection , 1999, Journal of Virology.

[23]  H. M. Petrassi,et al.  Characterization of the structure and function of W --> F WW domain variants: identification of a natively unfolded protein that folds upon ligand binding. , 1999, Biochemistry.

[24]  H. Petry,et al.  Packaging of small molecules into VP1-virus-like particles of the human polyomavirus JC virus. , 2000, Journal of virological methods.

[25]  S M Moghimi,et al.  Long-circulating and target-specific nanoparticles: theory to practice. , 2001, Pharmacological reviews.

[26]  K. Kataoka,et al.  Block copolymer micelles for drug delivery: design, characterization and biological significance. , 2001, Advanced drug delivery reviews.

[27]  R A Milligan,et al.  Automated identification of filaments in cryoelectron microscopy images. , 2001, Journal of structural biology.

[28]  B. Cargile,et al.  Identification of bacteriophage MS2 coat protein from E. coli lysates via ion trap collisional activation of intact protein ions. , 2001, Analytical chemistry.

[29]  G. Böhm,et al.  Binding of external ligands onto an engineered virus capsid. , 2001, Protein engineering.

[30]  R. Ho,et al.  Trends and developments in liposome drug delivery systems. , 2001, Journal of pharmaceutical sciences.

[31]  J. Witz,et al.  The formation of empty shells upon pressure induced decapsidation of turnip yellow mosaic virus , 2001, Archives of Virology.

[32]  M. Young,et al.  Protein Engineering of a Viral Cage for Constrained Nanomaterials Synthesis , 2002 .

[33]  Philip S Low,et al.  Folate-mediated delivery of macromolecular anticancer therapeutic agents. , 2002, Advanced drug delivery reviews.

[34]  M. Young,et al.  Chemical modification of a viral cage for multivalent presentation. , 2002, Chemical communications.

[35]  L. Canham,et al.  Use of Microcontact Printing Methods to Direct Pattern Formation of Calcified Mesoporous Silicon , 2002 .

[36]  R. Jain,et al.  Photodynamic therapy for cancer , 2003, Nature Reviews Cancer.

[37]  D. Peabody A Viral Platform for Chemical Modification and Multivalent Display , 2003, Journal of nanobiotechnology.

[38]  G. Lomonossoff,et al.  Cowpea mosaic virus-based chimaeras. Effects of inserted peptides on the phenotype, host range, and transmissibility of the modified viruses. , 2003, Virology.

[39]  S. Klußmann,et al.  Spiegelmers: Biostable Aptamers , 2003, Chembiochem : a European journal of chemical biology.

[40]  John E. Johnson,et al.  Hybrid virus-polymer materials. 1. Synthesis and properties of PEG-decorated cowpea mosaic virus. , 2003 .

[41]  R. Garcea,et al.  Virus-like particles as vaccines and vessels for the delivery of small molecules. , 2004, Current opinion in biotechnology.

[42]  Jacob M Hooker,et al.  Interior surface modification of bacteriophage MS2. , 2004, Journal of the American Chemical Society.

[43]  John E. Johnson,et al.  Heterologous expression of the modified coat protein of Cowpea chlorotic mottle bromovirus results in the assembly of protein cages with altered architectures and function. , 2004, The Journal of general virology.

[44]  P. Heegaard,et al.  Dendrimers in drug research. , 2004, Chemical Society reviews.

[45]  Wadih Arap,et al.  Design and validation of a bifunctional ligand display system for receptor targeting. , 2004, Chemistry & biology.

[46]  M. Young,et al.  Selective attachment and release of a chemotherapeutic agent from the interior of a protein cage architecture. , 2005, Chemical communications.

[47]  M. Finn,et al.  Accelerated bioorthogonal conjugation: a practical method for the ligation of diverse functional molecules to a polyvalent virus scaffold. , 2005, Bioconjugate chemistry.

[48]  M. Finn,et al.  Virus-glycopolymer conjugates by copper(I) catalysis of atom transfer radical polymerization and azide-alkyne cycloaddition. , 2005, Chemical communications.

[49]  M. Francis,et al.  Dual-surface modification of the tobacco mosaic virus. , 2005, Journal of the American Chemical Society.

[50]  Jing C. Zhou,et al.  Engineering of vault nanocapsules with enzymatic and fluorescent properties. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[51]  Peter G Stockley,et al.  Engineering thermal stability in RNA phage capsids via disulphide bonds. , 2005, Journal of nanoscience and nanotechnology.

[52]  P. Singh,et al.  Virus-based nanoparticles (VNPs): platform technologies for diagnostic imaging. , 2006, Advanced drug delivery reviews.

[53]  Marianne Manchester,et al.  Canine parvovirus-like particles, a novel nanomaterial for tumor targeting , 2006, Journal of nanobiotechnology.

[54]  F. Tama,et al.  Removal of Divalent Cations Induces Structural Transitions in Red Clover Necrotic Mosaic Virus, Revealing a Potential Mechanism for RNA Release , 2006, Journal of Virology.

[55]  Andries Zijlstra,et al.  Viral nanoparticles as tools for intravital vascular imaging , 2006, Nature Medicine.

[56]  Sek-Man Wong,et al.  In vitro-reassembled plant virus-like particles for loading of polyacids. , 2006, The Journal of general virology.

[57]  V. Rotello,et al.  Quantum dot encapsulation in viral capsids. , 2006, Nano letters.

[58]  Gustavo Helguera,et al.  The transferrin receptor part II: targeted delivery of therapeutic agents into cancer cells. , 2006, Clinical immunology.

[59]  John E. Johnson,et al.  The role of subunit hinges and molecular "switches" in the control of viral capsid polymorphism. , 2006, Journal of structural biology.

[60]  T. Daniels,et al.  The transferrin receptor part I: Biology and targeting with cytotoxic antibodies for the treatment of cancer. , 2006, Clinical immunology.

[61]  Marianne Manchester,et al.  Viruses and their uses in nanotechnology , 2006 .

[62]  Trevor Douglas,et al.  Viruses: Making Friends with Old Foes , 2006, Science.

[63]  Scott C. Brown,et al.  Research strategies for safety evaluation of nanomaterials. Part VI. Characterization of nanoscale particles for toxicological evaluation. , 2006, Toxicological sciences : an official journal of the Society of Toxicology.

[64]  Y. Chiang,et al.  Virus-Enabled Synthesis and Assembly of Nanowires for Lithium Ion Battery Electrodes , 2006, Science.

[65]  Jacob M Hooker,et al.  Dual-surface-modified bacteriophage MS2 as an ideal scaffold for a viral capsid-based drug delivery system. , 2007, Bioconjugate chemistry.

[66]  A. Belcher,et al.  Weaving Genetically Engineered Functionality into Mechanically Robust Virus Fibers , 2007 .

[67]  Duane E. Prasuhn,et al.  Bio-distribution, toxicity and pathology of cowpea mosaic virus nanoparticles in vivo. , 2007, Journal of controlled release : official journal of the Controlled Release Society.

[68]  Sek-Man Wong,et al.  Folic acid-conjugated protein cages of a plant virus: a novel delivery platform for doxorubicin. , 2007, Bioconjugate chemistry.

[69]  Nico A J M Sommerdijk,et al.  A virus-based single-enzyme nanoreactor. , 2007, Nature nanotechnology.

[70]  J. Karp,et al.  Nanocarriers as an Emerging Platform for Cancer Therapy , 2022 .

[71]  D. Clark,et al.  Solubilization and stabilization of bacteriophage MS2 in organic solvents , 2007, Biotechnology and bioengineering.

[72]  Michael L Klein,et al.  Emerging Applications of Polymersomes in Delivery: from Molecular Dynamics to Shrinkage of Tumors. , 2007, Progress in polymer science.

[73]  R. Nolte,et al.  Monodisperse polymer-virus hybrid nanoparticles. , 2007, Organic & biomolecular chemistry.

[74]  M. Young,et al.  Targeting and photodynamic killing of a microbial pathogen using protein cage architectures functionalized with a photosensitizer. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[75]  M. Young,et al.  Biodistribution studies of protein cage nanoparticles demonstrate broad tissue distribution and rapid clearance in vivo , 2007, International journal of nanomedicine.

[76]  Trevor Douglas,et al.  Biological Containers: Protein Cages as Multifunctional Nanoplatforms , 2007 .

[77]  V. Rotello,et al.  Core-like particles of an enveloped animal virus can self-assemble efficiently on artificial templates. , 2007, Nano letters.

[78]  Marianne Manchester,et al.  Folic acid-mediated targeting of cowpea mosaic virus particles to tumor cells. , 2007, Chemistry & biology.

[79]  S. Franzen,et al.  Encapsidation of nanoparticles by red clover necrotic mosaic virus. , 2007, Journal of the American Chemical Society.

[80]  T. Dreher,et al.  Turnip yellow mosaic virus as a chemoaddressable bionanoparticle. , 2007, Bioconjugate chemistry.

[81]  Signal ampflication using nanoplatform cluster formation , 2008 .

[82]  Duane E. Prasuhn,et al.  Plasma clearance of bacteriophage Qbeta particles as a function of surface charge. , 2008, Journal of the American Chemical Society.

[83]  Yu-Ying He,et al.  Pristine (C60) and hydroxylated [C60(OH)24] fullerene phototoxicity towards HaCaT keratinocytes: type I vs type II mechanisms. , 2008, Chemical research in toxicology.

[84]  H. Horinouchi,et al.  Structure, photophysical property, and cytotoxicity of human serum albumin complexed with tris(dicarboxymethylene)[60]fullerene. , 2008, Bioconjugate chemistry.

[85]  M. Francis,et al.  Oxidative coupling of peptides to a virus capsid containing unnatural amino acids. , 2008, Chemical communications.

[86]  P. Tsao,et al.  A human ferritin iron oxide nano‐composite magnetic resonance contrast agent , 2008, Magnetic resonance in medicine.

[87]  Chris S. Rae,et al.  Interaction of Cowpea Mosaic Virus (CPMV) Nanoparticles with Antigen Presenting Cells In Vitro and In Vivo , 2009, PloS one.

[88]  M. Finn,et al.  Chemical modification of viruses and virus-like particles. , 2009, Current topics in microbiology and immunology.

[89]  D. Pang,et al.  Imaging viral behavior in Mammalian cells with self-assembled capsid-quantum-dot hybrid particles. , 2009, Small.

[90]  Sonny C. Hsiao,et al.  Viral capsid DNA aptamer conjugates as multivalent cell-targeting vehicles. , 2009, Journal of the American Chemical Society.

[91]  M. Manchester,et al.  Biomedical nanotechnology using virus-based nanoparticles. , 2009, Current topics in microbiology and immunology.

[92]  Yun Jung Lee,et al.  Fabricating Genetically Engineered High-Power Lithium-Ion Batteries Using Multiple Virus Genes , 2009, Science.

[93]  M. Morris,et al.  Twenty years of cell-penetrating peptides: from molecular mechanisms to therapeutics , 2009, British journal of pharmacology.

[94]  Inge J. Minten,et al.  Controlled encapsulation of multiple proteins in virus capsids. , 2009, Journal of the American Chemical Society.

[95]  Chuanbin Mao,et al.  Self-assembly of drug-loaded liposomes on genetically engineered target-recognizing M13 phage: a novel nanocarrier for targeted drug delivery. , 2009, Small.

[96]  M. Young,et al.  Supramolecular protein cage composite MR contrast agents with extremely efficient relaxivity properties. , 2009, Nano letters.

[97]  P. Nazarov,et al.  Viruses: incredible nanomachines. New advances with filamentous phages , 2009, European Biophysics Journal.

[98]  Qian Wang,et al.  Viruses and virus-like protein assemblies—Chemically programmable nanoscale building blocks , 2009 .

[99]  J. Fiedler,et al.  Assembly of hybrid bacteriophage Qbeta virus-like particles. , 2009, Biochemistry.

[100]  Gary Siuzdak,et al.  Endothelial Targeting of Cowpea Mosaic Virus (CPMV) via Surface Vimentin , 2009, PLoS pathogens.

[101]  Wei Wang,et al.  Development of an antisense RNA delivery system using conjugates of the MS2 bacteriophage capsids and HIV-1 TAT cell-penetrating peptide. , 2009, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[102]  N. Steinmetz,et al.  Buckyballs meet viral nanoparticles: candidates for biomedicine. , 2009, Journal of the American Chemical Society.

[103]  S. Schmid,et al.  Multivalent Display and Receptor‐Mediated Endocytosis of Transferrin on Virus‐Like Particles , 2010, Chembiochem : a European journal of chemical biology.

[104]  Nicole F Steinmetz,et al.  Intravital imaging of embryonic and tumor neovasculature using viral nanoparticles , 2010, Nature Protocols.

[105]  C. Mello,et al.  Chemical modification of M13 bacteriophage and its application in cancer cell imaging. , 2010, Bioconjugate chemistry.

[106]  M. Kinjo,et al.  Low pH‐Triggered Model Drug Molecule Release from Virus‐Like Particles , 2010, Chembiochem : a European journal of chemical biology.

[107]  Inge J. Minten,et al.  Virus-like particles templated by DNA micelles: a general method for loading virus nanocarriers. , 2010, Journal of the American Chemical Society.

[108]  N. Stephanopoulos,et al.  Dual-surface modified virus capsids for targeted delivery of photodynamic agents to cancer cells. , 2010, ACS nano.

[109]  A. Heck,et al.  Encapsulation of phthalocyanine supramolecular stacks into virus-like particles. , 2011, Journal of the American Chemical Society.

[110]  M. McConnell,et al.  Protein cage nanoparticles bearing the LyP-1 peptide for enhanced imaging of macrophage-rich vascular lesions. , 2011, ACS nano.

[111]  Allie C. Obermeyer,et al.  Oxidative modification of native protein residues using cerium(IV) ammonium nitrate. , 2011, Journal of the American Chemical Society.

[112]  Zhijun Zhang,et al.  Self-assembled virus-like particles from rotavirus structural protein VP6 for targeted drug delivery. , 2011, Bioconjugate chemistry.

[113]  Allie C. Obermeyer,et al.  Rapid chemoselective bioconjugation through oxidative coupling of anilines and aminophenols. , 2011, Journal of the American Chemical Society.