On integer points in polyhedra

We give an upper bound on the number of vertices ofPI, the integer hull of a polyhedronP, in terms of the dimensionn of the space, the numberm of inequalities required to describeP, and the size ϕ of these inequalities. For fixedn the bound isO(mnϕn−). We also describe an algorithm which determines the number of integer points in a polyhedron to within a multiplicative factor of 1+ε in time polynomial inm, ϕ and 1/ε when the dimensionn is fixed.

[1]  David G. Larman,et al.  The vertices of the knapsack polytope , 1983, Discret. Appl. Math..

[2]  Christos H. Papadimitriou,et al.  On the complexity of integer programming , 1981, JACM.

[3]  Martin E. Dyer,et al.  A random polynomial-time algorithm for approximating the volume of convex bodies , 1991, JACM.

[4]  László Lovász,et al.  On integer points in polyhedra: A lower bound , 1992, Comb..

[5]  David S. Rubin,et al.  On the Unlimited Number of Faces in Integer Hulls of Linear Programs with a Single Constraint , 1970, Oper. Res..

[6]  C. A. Rogers,et al.  An Introduction to the Geometry of Numbers , 1959 .

[7]  Ravi Kannan,et al.  Minkowski's Convex Body Theorem and Integer Programming , 1987, Math. Oper. Res..

[8]  L. Mordell Review: J. W. S. Cassels, An introduction to the geometry of numbers , 1961 .

[9]  F. Thorne,et al.  Geometry of Numbers , 2017, Algebraic Number Theory.

[10]  Hendrik W. Lenstra,et al.  Integer Programming with a Fixed Number of Variables , 1983, Math. Oper. Res..

[11]  Mark Evan Hartmann,et al.  Cutting planes and the complexity of the integer hull , 1989 .

[12]  Jacques Cohen,et al.  Two Algorithms for Determining Volumes of Convex Polyhedra , 1979, JACM.

[13]  V. N. Shevchenko Algebraic approach in integer programming , 1984, Cybernetics.

[14]  L. Lovász,et al.  Geometric Algorithms and Combinatorial Optimization , 1981 .

[15]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[16]  G. C. Shephard,et al.  Convex Polytopes and the Upper Bound Conjecture , 1971 .

[17]  Leslie G. Valiant,et al.  The Complexity of Enumeration and Reliability Problems , 1979, SIAM J. Comput..

[18]  DyerMartin,et al.  A random polynomial-time algorithm for approximating the volume of convex bodies , 1991 .

[19]  William J. Cook,et al.  Sensitivity theorems in integer linear programming , 1986, Math. Program..

[20]  László Lovász,et al.  Brick decompositions and the matching rank of graphs , 1982, Comb..