Learning fuzzy partitions in FIR methodology

The main goal of this research is the development of a hybrid genetic fuzzy system (GFS), composed by the fuzzy inductive reasoning (FIR) methodology and a genetic algorithm (GA) that is responsible of learning the fuzzy partitions needed in the recode process of FIR. A partition includes the number of fuzzy sets (classes) per variable and the membership function of each class. The resulting GFS is applied to two real problems, i.e. the estimation of the maintenance cost of medium voltage lines in Spanish towns and the prediction of ozone levels in Austria. The results obtained in each application are compared with some of the most popular classical statistical modeling methods, neural networks and other hybrid evolutionary data analysis techniques.

[1]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[2]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[3]  Francisco Herrera,et al.  Tuning fuzzy logic controllers by genetic algorithms , 1995, Int. J. Approx. Reason..

[4]  Frank Hoffmann,et al.  Evolutionary design of a fuzzy knowledge base for a mobile robot , 1997, Int. J. Approx. Reason..

[5]  Francisco Herrera,et al.  Computing the Spanish Medium Electrical Line Maintenance Costs by means of Evolution-Based Learning Processes , 1998, IEA/AIE.

[6]  Francisco Herrera,et al.  Ten years of genetic fuzzy systems: current framework and new trends , 2004, Fuzzy Sets Syst..

[7]  James E. Baker,et al.  Adaptive Selection Methods for Genetic Algorithms , 1985, International Conference on Genetic Algorithms.

[8]  Philip R. Thrift,et al.  Fuzzy Logic Synthesis with Genetic Algorithms , 1991, ICGA.

[9]  H.A. Camargo,et al.  Genetic design of fuzzy knowledge bases - a study of different approaches , 2004, IEEE Annual Meeting of the Fuzzy Information, 2004. Processing NAFIPS '04..

[10]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[11]  Witold Pedrycz,et al.  Context adaptation in fuzzy processing and genetic algorithms , 1998, Int. J. Intell. Syst..

[12]  Juan Luis Castro,et al.  Strategies to identify fuzzy rules directly from certainty degrees: a comparison and a proposal , 2004, IEEE Transactions on Fuzzy Systems.

[13]  J. Antonio,et al.  Aprendizaje de particiones difusas para razonamiento inductivo , 2006 .

[14]  Chin-Teng Lin,et al.  A GA-based fuzzy adaptive learning control network , 2000, Fuzzy Sets Syst..

[15]  Cornelius T. Leondes,et al.  Fuzzy Theory Systems: Techniques and Applications , 1999 .

[16]  Ludmila I. Kuncheva,et al.  Fuzzy Classifier Design , 2000, Studies in Fuzziness and Soft Computing.

[17]  H. B. Gürocak,et al.  A genetic-algorithm-based method for tuning fuzzy logic controllers , 1999, Fuzzy Sets Syst..

[18]  Francisco Herrera,et al.  Solving Electrical Distribution Problems Using Hybrid Evolutionary Data Analysis Techniques , 2004, Applied Intelligence.

[19]  Antonio González Muñoz,et al.  An experimental study about the search mechanism in the SLAVE learning algorithm: Hill-climbing methods versus genetic algorithms , 2001, Inf. Sci..

[20]  Michio Sugeno,et al.  Industrial Applications of Fuzzy Technology in the World , 1995 .

[21]  Àngela Nebot,et al.  Local Maximum Ozone Concentration Prediction Using Soft Computing Methodologies , 2003 .

[22]  Francisco Herrera,et al.  Genetic Fuzzy Systems - Evolutionary Tuning and Learning of Fuzzy Knowledge Bases , 2002, Advances in Fuzzy Systems - Applications and Theory.

[23]  Lotfi A. Zadeh,et al.  Fuzzy Algorithms , 1968, Inf. Control..

[24]  María José del Jesús,et al.  Induction of fuzzy-rule-based classifiers with evolutionary boosting algorithms , 2004, IEEE Transactions on Fuzzy Systems.

[25]  David B. H. Tay,et al.  Enhancement of document images using multiresolution and fuzzy logic techniques , 1999, IEEE Signal Processing Letters.

[26]  F. Gomide,et al.  Ten years of genetic fuzzy systems: current framework and new trends , 2001, Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference (Cat. No. 01TH8569).

[27]  J. Maeda,et al.  Signal processing and pattern recognition with soft computing , 2001, Proc. IEEE.

[28]  Sina Balkir,et al.  Evolution-based design of neural fuzzy networks using self-adapting genetic parameters , 2002, IEEE Trans. Fuzzy Syst..

[29]  Héctor Pomares,et al.  Online global learning in direct fuzzy controllers , 2004, IEEE Transactions on Fuzzy Systems.

[30]  Les M. Howard,et al.  The GA-P: A Genetic Algorithm and Genetic Programming Hybrid , 1995, IEEE Expert.

[31]  Luis Magdalena,et al.  Adapting the gain of an FLC with genetic algorithms , 1997, Int. J. Approx. Reason..

[32]  Àngela Nebot,et al.  Synthesis of an anaesthetic agent administration system using fuzzy inductive reasoning , 1996, Artif. Intell. Medicine.

[33]  G. Klir,et al.  Evolutionary fuzzy c-means clustering algorithm , 1995, Proceedings of 1995 IEEE International Conference on Fuzzy Systems..

[34]  James E. Baker,et al.  Reducing Bias and Inefficienry in the Selection Algorithm , 1987, ICGA.

[35]  Frank Hoffmann,et al.  Evolutionary algorithms for fuzzy control system design , 2001, Proc. IEEE.

[36]  T. Van Le Evolutionary fuzzy clustering , 1995, Proceedings of 1995 IEEE International Conference on Evolutionary Computation.

[37]  John J. Grefenstette,et al.  Optimization of Control Parameters for Genetic Algorithms , 1986, IEEE Transactions on Systems, Man, and Cybernetics.

[38]  Hong Yan,et al.  Fuzzy Algorithms: With Applications to Image Processing and Pattern Recognition , 1996, Advances in Fuzzy Systems - Applications and Theory.

[39]  H. Ishibuchi Genetic fuzzy systems: evolutionary tuning and learning of fuzzy knowledge bases , 2004 .

[40]  J. Bezdek,et al.  Genetic fuzzy clustering , 1994, NAFIPS/IFIS/NASA '94. Proceedings of the First International Joint Conference of The North American Fuzzy Information Processing Society Biannual Conference. The Industrial Fuzzy Control and Intellige.

[41]  Shyi-Ming Chen,et al.  Document retrieval using fuzzy-valued concept networks , 2001, IEEE Trans. Syst. Man Cybern. Part B.

[42]  Hisao Ishibuchi,et al.  Performance evaluation of fuzzy classifier systems for multidimensional pattern classification problems , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[43]  Two approaches for information retrieval through fuzzy associations , 1989, IEEE Trans. Syst. Man Cybern..

[44]  Bush Jones,et al.  Architecture of systems problem solving , 1986, Journal of the American Society for Information Science.

[45]  Àngela Nebot,et al.  COMBINED QUALITATIVE/QUANTITATIVE SIMULATION MODELS OF CONTINUOUS-TIME PROCESSES USING FUZZY INDUCTIVE REASONING TECHNIQUES , 1996 .

[46]  Seppo J. Ovaska,et al.  Industrial applications of soft computing: a review , 2001, Proc. IEEE.

[47]  Piero P. Bonissone,et al.  Soft computing: the convergence of emerging reasoning technologies , 1997, Soft Comput..

[48]  Franz Wotawa,et al.  Local Maximum Ozone Concentration Prediction Using Neural Networks , 1999 .

[49]  Marco Russo,et al.  FuGeNeSys-a fuzzy genetic neural system for fuzzy modeling , 1998, IEEE Trans. Fuzzy Syst..

[50]  Henning Heider,et al.  A cascaded genetic algorithm for improving fuzzy-system design , 1997, Int. J. Approx. Reason..

[51]  Bernd Jähne,et al.  Signal processing and pattern recognition , 1999 .

[52]  María José del Jesús,et al.  Genetic tuning of fuzzy rule deep structures preserving interpretability and its interaction with fuzzy rule set reduction , 2005, IEEE Transactions on Fuzzy Systems.

[53]  Marcelo Simoes Introduction to Fuzzy Control , 2003 .