Classification-based self-adaptive differential evolution with fast and reliable convergence performance

To avoid the problems of slow and premature convergence of the differential evolution (DE) algorithm, this paper presents a new DE variant named p-ADE. It improves the convergence performance by implementing a new mutation strategy “DE/rand-to-best/pbest”, together with a classification mechanism, and controlling the parameters in a dynamic adaptive manner, where the “DE/rand-to-best/pbest” utilizes the current best solution together with the best previous solution of each individual to guide the search direction. The classification mechanism helps to balance the exploration and exploitation of individuals with different fitness characteristics, thus improving the convergence rate. Dynamic self-adaptation is beneficial for controlling the extent of variation for each individual. Also, it avoids the requirement for prior knowledge about parameter settings. Experimental results confirm the superiority of p-ADE over several existing DE variants as well as other significant evolutionary optimizers.

[1]  Janez Brest,et al.  Performance comparison of self-adaptive and adaptive differential evolution algorithms , 2007, Soft Comput..

[2]  A. Kai Qin,et al.  Self-adaptive differential evolution algorithm for numerical optimization , 2005, 2005 IEEE Congress on Evolutionary Computation.

[3]  Zbigniew Michalewicz,et al.  Parameter control in evolutionary algorithms , 1999, IEEE Trans. Evol. Comput..

[4]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[5]  P. N. Suganthan,et al.  Differential Evolution Algorithm With Strategy Adaptation for Global Numerical Optimization , 2009, IEEE Transactions on Evolutionary Computation.

[6]  Frank Y. Shih,et al.  A differential evolution based algorithm for breaking the visual steganalytic system , 2008, Soft Comput..

[7]  Jason Teo,et al.  Exploring dynamic self-adaptive populations in differential evolution , 2006, Soft Comput..

[8]  M.M.A. Salama,et al.  Opposition-Based Differential Evolution , 2008, IEEE Transactions on Evolutionary Computation.

[9]  Jing J. Liang,et al.  Dynamic multi-swarm particle swarm optimizer with local search , 2005, 2005 IEEE Congress on Evolutionary Computation.

[10]  Joni-Kristian Kämäräinen,et al.  Differential Evolution Training Algorithm for Feed-Forward Neural Networks , 2003, Neural Processing Letters.

[11]  Arthur C. Sanderson,et al.  Minimal representation multisensor fusion using differential evolution , 1999, IEEE Trans. Syst. Man Cybern. Part A.

[12]  Francisco Herrera,et al.  A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 Special Session on Real Parameter Optimization , 2009, J. Heuristics.

[13]  Amit Konar,et al.  Two improved differential evolution schemes for faster global search , 2005, GECCO '05.

[14]  R. Storn,et al.  On the usage of differential evolution for function optimization , 1996, Proceedings of North American Fuzzy Information Processing.

[15]  Jing J. Liang,et al.  Comprehensive learning particle swarm optimizer for global optimization of multimodal functions , 2006, IEEE Transactions on Evolutionary Computation.

[16]  Xin Yao,et al.  Evolutionary programming made faster , 1999, IEEE Trans. Evol. Comput..

[17]  René Thomsen,et al.  A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[18]  P. N. Suganthan,et al.  Differential Evolution: A Survey of the State-of-the-Art , 2011, IEEE Transactions on Evolutionary Computation.

[19]  Carlos A. Coello Coello,et al.  A comparative study of differential evolution variants for global optimization , 2006, GECCO.

[20]  Ville Tirronen,et al.  Scale factor local search in differential evolution , 2009, Memetic Comput..

[21]  Hitoshi Iba,et al.  Enhancing differential evolution performance with local search for high dimensional function optimization , 2005, GECCO '05.

[22]  Amit Konar,et al.  Differential Evolution Using a Neighborhood-Based Mutation Operator , 2009, IEEE Transactions on Evolutionary Computation.

[23]  R. Storn Designing nonstandard filters with differential evolution , 2005, IEEE Signal Process. Mag..

[24]  Zbigniew Michalewicz,et al.  Parameter Control in Evolutionary Algorithms , 2007, Parameter Setting in Evolutionary Algorithms.

[25]  G. Jeyakumar,et al.  An empirical comparison of differential evolution variants for high dimensional function optimization , 2009, 2009 International Conference on Intelligent Agent & Multi-Agent Systems.

[26]  Jason Teo,et al.  Self-adaptive population sizing for a tune-free differential evolution , 2009, Soft Comput..

[27]  Arthur C. Sanderson,et al.  JADE: Self-adaptive differential evolution with fast and reliable convergence performance , 2007, 2007 IEEE Congress on Evolutionary Computation.

[28]  C. Shunmuga Velayutham,et al.  A comparative performance analysis of Differential Evolution and Dynamic Differential Evolution variants , 2009, 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC).

[29]  Jing J. Liang,et al.  Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization , 2005 .

[30]  Janez Brest,et al.  Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems , 2006, IEEE Transactions on Evolutionary Computation.