Information Rates for Secret Sharing over Various Access Structures.
暂无分享,去创建一个
[1] R. Gallager. Information Theory and Reliable Communication , 1968 .
[2] Randall Dougherty,et al. Six New Non-Shannon Information Inequalities , 2006, 2006 IEEE International Symposium on Information Theory.
[3] Feller William,et al. An Introduction To Probability Theory And Its Applications , 1950 .
[4] László Csirmaz,et al. The Size of a Share Must Be Large , 1994, Journal of Cryptology.
[5] Raymond W. Yeung,et al. A First Course in Information Theory , 2002 .
[6] Ehud D. Karnin,et al. On secret sharing systems , 1983, IEEE Trans. Inf. Theory.
[7] Jaume Martí Farré,et al. On secret sharing schemes, matroids and polymatroids , 2010 .
[8] Douglas R. Stinson,et al. Decomposition constructions for secret-sharing schemes , 1994, IEEE Trans. Inf. Theory.
[9] Zhen Zhang,et al. On Characterization of Entropy Function via Information Inequalities , 1998, IEEE Trans. Inf. Theory.
[10] Paul D. Seymour. On secret-sharing matroids , 1992, J. Comb. Theory, Ser. B.
[11] Douglas R. Stinson,et al. Cryptography: Theory and Practice , 1995 .
[12] Satoru Fujishige,et al. Polymatroidal Dependence Structure of a Set of Random Variables , 1978, Inf. Control..
[13] Fazlollah M. Reza,et al. Introduction to Information Theory , 2004, Lecture Notes in Electrical Engineering.
[14] Alfredo De Santis,et al. On Secret Sharing Schemes , 1998, Inf. Process. Lett..
[15] Konstantin Makarychev,et al. Conditionally independent random variables , 2005, ArXiv.
[16] Alfredo De Santis,et al. On the Size of Shares for Secret Sharing Schemes , 1991, CRYPTO.
[17] Paul Seymour,et al. A FORBIDDEN MINOR CHARACTERIZATION OF MATROID PORTS , 1976 .
[18] Catherine A. Meadows,et al. Security of Ramp Schemes , 1985, CRYPTO.
[19] Frantisek Matús,et al. Infinitely Many Information Inequalities , 2007, 2007 IEEE International Symposium on Information Theory.
[20] Carles Padró,et al. Matroids Can Be Far from Ideal Secret Sharing , 2008, TCC.
[21] Weidong Xu,et al. A projection method for derivation of non-Shannon-type information inequalities , 2008, 2008 IEEE International Symposium on Information Theory.
[22] Douglas R. Stinson,et al. An explication of secret sharing schemes , 1992, Des. Codes Cryptogr..
[23] William Feller,et al. An Introduction to Probability Theory and Its Applications , 1967 .
[24] Adi Shamir,et al. How to share a secret , 1979, CACM.
[25] F. Mattt,et al. Conditional Independences among Four Random Variables Iii: Final Conclusion , 1999 .
[26] Sang Joon Kim,et al. A Mathematical Theory of Communication , 2006 .
[27] Alfredo De Santis,et al. Tight Bounds on the Information Rate of Secret Sharing Schemes , 1997, Des. Codes Cryptogr..
[28] James G. Oxley,et al. Matroid theory , 1992 .
[29] G. R. BLAKLEY. Safeguarding cryptographic keys , 1979, 1979 International Workshop on Managing Requirements Knowledge (MARK).
[30] Ernest F. Brickell,et al. On the classification of ideal secret sharing schemes , 1989, Journal of Cryptology.
[31] Pascal Paillier,et al. On Ideal Non-perfect Secret Sharing Schemes , 1997, Security Protocols Workshop.
[32] Kaoru Kurosawa,et al. Nonperfect Secret Sharing Schemes and Matroids , 1994, EUROCRYPT.
[33] M. Lunelli,et al. Representation of matroids , 2002, math/0202294.