Ice content and interannual water storage changes of an active rock glacier in the dry Andes of Argentina

Abstract. The quantification of volumetric ice and water contents in active rock glaciers is necessary to estimate their role as water stores and contributors to runoff in dry mountain catchments. In the semi-arid to arid Andes of Argentina, active rock glaciers potentially constitute important water reservoirs due to their widespread distribution. Here however, water storage capacities and their interannual changes have so far escaped quantification in detailed field studies. Volumetric ice and water contents were quantified using a petrophysical four-phase model (4PM) based on complementary electrical resistivities (ERT) and seismic refraction tomographies (SRT) in different positions of Dos Lenguas rock glacier in the Upper Agua Negra basin, Argentina. We derived vertical and horizontal surface changes of the Dos Lenguas rock glacier, for the periods 2016–17 and 2017–18 using drone-derived digital elevation models (DEM). Interannual water storage changes of −36 mm yr−1 and +27 mm yr−1 derived from DEMs of Difference (DoD) for the periods 2016–17 and 2017–18, respectively, indicate that significant amounts of annual precipitation rates can be stored in and released from the active rock glacier. Heterogeneous ice and water contents show ice-rich permafrost and supra-, intra- and sub-permafrost aquifers in the subsurface. Active layer and ice-rich permafrost control traps and pathways of shallow ground water, and thus regulate interannual storage changes and water releases from the active rock glacier in the dry mountain catchment. The ice content of 1.7–2.0 × 109 kg in the active Dos Lenguas rock glacier represents an important long-term ice reservoir, just like other ground ice deposits in the vicinity, if compared to surface ice that covers less than 3 % of the high mountain catchment.

[1]  Juergen H. Schön,et al.  Physical Properties of Rocks: A Workbook , 2011 .

[2]  Adam Mosbrucker,et al.  Camera system considerations for geomorphic applications of SfM photogrammetry , 2017 .

[3]  F. Nitsche,et al.  Shallow seismic surveying of an Alpine rock glacier , 2002 .

[4]  E. Brückl,et al.  Internal structure and ice content of Reichenkar rock glacier (Stubai Alps, Austria) assessed by geophysical investigations , 2007 .

[5]  O. Korup,et al.  Permafrost activity and atmospheric warming in the Argentinian Andes , 2018, Geomorphology.

[6]  M. Hayashi,et al.  Groundwater flow and storage processes in an inactive rock glacier , 2018, Hydrological Processes.

[7]  E. Berthier,et al.  Two decades of glacier mass loss along the Andes , 2019, Nature Geoscience.

[8]  K. Krainer,et al.  Hydrology of Active Rock Glaciers: Examples from the Austrian Alps , 2002 .

[9]  Lukas U. Arenson,et al.  Triaxial constant stress and constant strain rate tests on ice-rich permafrost samples , 2005 .

[10]  R. Armstrong,et al.  The Physics of Glaciers , 1981 .

[11]  E. Brückl,et al.  Internal structure , ice content and dynamics of Ölgrube and Kaiserberg rock glaciers ( Ötztal Alps , Austria ) determined from geophysical surveys , 2022 .

[12]  Alexander Brenning,et al.  Hydrological and geomorphological significance of rock glaciers in the dry Andes, Chile (27°–33°S) , 2010 .

[13]  Marion Réveillet,et al.  Rock glaciers as a water resource in a changing climate in the semiarid Chilean Andes , 2019, Regional Environmental Change.

[14]  B. Kurylyk,et al.  Influence of a rock glacier spring on the stream energy budget and cold‐water refuge in an alpine stream , 2017 .

[15]  Pedro Skvarca,et al.  Constraining glacier elevation and mass changes in South America , 2019, Nature Climate Change.

[16]  Lukas U. Arenson,et al.  Borehole deformation measurements and internal structure of some rock glaciers in Switzerland , 2002 .

[17]  M. Hayashi,et al.  Locating and characterising groundwater storage areas within an alpine watershed using time‐lapse gravity, GPR and seismic refraction methods , 2012 .

[18]  R. Betts,et al.  The distribution and hydrological significance of rock glaciers in the Nepalese Himalaya , 2018 .

[19]  C. Pellet,et al.  Mountain permafrost degradation documented through a network of permanent electrical resistivity tomography sites , 2018, The Cryosphere.

[20]  A. Kääb,et al.  Rock glacier dynamics : implications from high-resolution measurements of surface velocity fields , 2002 .

[21]  D. Trombotto,et al.  Indicators of present global warming through changes in active layer-thickness, estimation of thermal diffusivity and geomorphological observations in the Morenas Coloradas rockglacier, Central Andes of Mendoza, Argentina , 2009 .

[22]  H. Maurer,et al.  A new model for estimating subsurface ice content based on combined electrical and seismic data sets , 2011 .

[23]  G. E. Archie The electrical resistivity log as an aid in determining some reservoir characteristics , 1942 .

[24]  A. Brenning Geomorphological, hydrological and climatic significance of rock glaciers in the Andes of Central Chile (33–35°S) , 2005 .

[25]  Andreas Kääb,et al.  On the response of rockglacier creep to surface temperature increase , 2007 .

[26]  C. Hauck,et al.  Petrophysical Joint Inversion Applied to Alpine Permafrost Field Sites to Image Subsurface Ice, Water, Air, and Rock Contents , 2020, Frontiers in Earth Science.

[27]  M. Phillips,et al.  How rock glacier hydrology, deformation velocities and ground temperatures interact: Examples from the Swiss Alps , 2019, Permafrost and Periglacial Processes.

[28]  R. Betts,et al.  Mountain rock glaciers contain globally significant water stores , 2018, Scientific Reports.

[29]  Christian Hauck,et al.  Meltwater infiltration into the frozen active layer at an alpine permafrost site , 2010 .

[30]  S. Gruber,et al.  Mechanisms linking active rock glaciers and impounded surface water formation in high‐mountain areas , 2018 .

[31]  C. Pellet,et al.  Soil Moisture Data for the Validation of Permafrost Models Using Direct and Indirect Measurement Approaches at Three Alpine Sites , 2016, Front. Earth Sci..

[32]  S. Miller,et al.  Influence of Rock Glaciers on Stream Hydrology in the La Sal Mountains, Utah , 2014 .

[33]  C. Hauck,et al.  Resolution capacity of geophysical monitoring regarding permafrost degradation induced by hydrological processes , 2016 .

[34]  J. Brasington,et al.  Methodological sensitivity of morphometric estimates of coarse fluvial sediment transport , 2003 .

[35]  Andreas Kääb,et al.  Analysing the creep of mountain permafrost using high precision aerial photogrammetry: 25 years of monitoring Gruben rock glacier, Swiss Alps , 1997 .

[36]  P. Duvillard,et al.  Three‐Dimensional Electrical Conductivity and Induced Polarization Tomography of a Rock Glacier , 2018, Journal of Geophysical Research: Solid Earth.

[37]  P. Stadler,et al.  Impact of mountain permafrost on flow path and runoff response in a high alpine catchment , 2017 .

[38]  Michael Krautblatter,et al.  Pseudo 3‐D P wave refraction seismic monitoring of permafrost in steep unstable bedrock , 2014 .

[39]  H. Maurer,et al.  Instruments and Methods Geophysical imaging of alpine rock glaciers , 2007 .

[40]  The Hydrological Significance of Rock Glaciers , 1976 .

[41]  Hans-Gerd Maas,et al.  The determination of high-resolution spatio-temporal glacier motion fields from time-lapse sequences , 2017 .

[42]  C. Hauck,et al.  Applicability of electrical resistivity tomography monitoring to coarse blocky and ice‐rich permafrost landforms , 2009 .

[43]  D. Trombotto-Liaudat,et al.  Permafrost model in coarse-blocky deposits for the Dry Andes, Argentina (28°-33° S) , 2020 .

[44]  M. Hayashi,et al.  Internal structure and hydrological functions of an alpine proglacial moraine , 2011 .

[45]  S. Gruber,et al.  Review: Impacts of permafrost degradation on inorganic chemistry of surface fresh water , 2017 .

[46]  P. Limpach,et al.  Kinematic investigations on the Furggwanghorn Rock Glacier, Switzerland , 2018 .

[47]  J. Milana,et al.  Hydrochemical appraisal of ice‐ and rock‐glacier meltwater in the hyperarid Agua Negra drainage basin, Andes of Argentina , 2008 .

[48]  J. Brasington,et al.  Accounting for uncertainty in DEMs from repeat topographic surveys: improved sediment budgets , 2009 .

[49]  Jason S. Sibold,et al.  Changes in Andes snow cover from MODIS data, 2000–2016 , 2018 .

[50]  M. Loke Tutorial : 2-D and 3-D electrical imaging surveys , 2001 .

[51]  A. Kääb,et al.  SURFACE DEFORMATION OF CREEPING MOUNTAIN PERMAFROST. PHOTOGRAMMETRIC INVESTIGATIONS ON ROCK GLACIER MURTÈL, SWISS ALPS. , 1998 .

[52]  G. Forlani,et al.  Unmanned Aerial Systems and DSM matching for rock glacier monitoring , 2017 .

[53]  W. T. Pfeffer,et al.  Rock glacier dynamics and paleoclimatic implications , 1999 .

[54]  A. Vieli,et al.  Short-term velocity variations at three rock glaciers and their relationship with meteorological conditions , 2015, Earth Surface Dynamics.

[55]  I. Berthling Beyond confusion: Rock glaciers as cryo-conditioned landforms , 2011 .

[56]  S. Springman,et al.  Multidisciplinary investigations on three rock glaciers in the swiss alps: legacies and future perspectives , 2012 .

[57]  Christophe Kinnard,et al.  Internal structure and composition of a rock glacier in the Andes (upper Choapa valley, Chile) using borehole information and ground-penetrating radar , 2013, Annals of Glaciology.

[58]  O. Korup,et al.  Rock‐glacier dams in High Asia , 2018, Earth Surface Processes and Landforms.

[59]  T. Barnett,et al.  Potential impacts of a warming climate on water availability in snow-dominated regions , 2005, Nature.

[60]  C. Hauck,et al.  Ice content and interannual water storage changes of an active rock glacier in the dry Andes of Argentina , 2021 .

[61]  Andreas Kääb,et al.  Fast deformation of perennially frozen debris in a warm rock glacier in the Swiss Alps: An effect of liquid water , 2008 .

[62]  M. Phillips,et al.  Estimating Non‐Conductive Heat Flow Leading to Intra‐Permafrost Talik Formation at the Ritigraben Rock Glacier (Western Swiss Alps) , 2017 .

[63]  A. Emmert,et al.  Internal structure of two alpine rock glaciers investigated by quasi-3-D electrical resistivity imaging , 2016 .

[64]  R. Fensholt,et al.  Snow cover and snow albedo changes in the central Andes of Chile and Argentina from daily MODIS observations (2000–2016) , 2018 .

[65]  C. Hauck New Concepts in Geophysical Surveying and Data Interpretation for Permafrost Terrain , 2013 .

[66]  J. Milana,et al.  Application of Radio Echo Sounding at the arid Andes of Argentina: the Agua Negra Glacier , 1999 .

[67]  J. Milana,et al.  Internal structure and behaviour of a rock glacier in the Arid Andes of Argentina , 2002 .

[68]  M. Hoelzle,et al.  Modeled sensitivity of two alpine permafrost sites to RCM‐based climate scenarios , 2013 .

[69]  I. Hajdas,et al.  A 10,300-year-old permafrost core from the active rock glacier Lazaun, southern Ötztal Alps (South Tyrol, northern Italy) , 2015, Quaternary Research.

[70]  D. Draebing Application of refraction seismics in alpine permafrost studies: A review , 2016 .

[71]  K. Anderson,et al.  Rock Glaciers as Water Stores in the Bolivian Andes: An Assessment of Their Hydrological Importance , 2015 .

[72]  Andreas Kääb,et al.  Permafrost creep and rock glacier dynamics , 2006 .

[73]  Matthias Jakob,et al.  The significance of rock glaciers in the dry Andes – A discussion of Azócar and Brenning (2010) and Brenning and Azócar (2010) , 2010 .

[74]  J. Giardino,et al.  Engineering geomorphology of rock glaciers , 1999 .

[75]  K. Anderson,et al.  Future climate warming and changes to mountain permafrost in the Bolivian Andes , 2016, Climatic Change.

[76]  Luca Faust,et al.  Applied Geophysics In Periglacial Environments , 2016 .

[77]  N. Caine,et al.  Geochemistry and source waters of rock glacier outflow, Colorado Front Range , 2006 .

[78]  J. Michaelsen,et al.  The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes , 2015, Scientific Data.

[79]  F. Colombo,et al.  Geological setting of the Argentine Frontal Cordillera in the flat-slab segment (30°00′–31°30′S latitude) , 2002 .

[80]  Christian Hauck,et al.  Monitoring mountain permafrost evolution using electrical resistivity tomography : A 7-year study of seasonal, annual, and long-term variations at Schilthorn, Swiss Alps , 2008 .

[81]  L. Schrott Global solar radiation, soil temperature and permafrost in the Central Andes, Argentina: A progress report , 1991 .

[82]  S. Kotlarski,et al.  Semi-automated calibration method for modelling of mountain permafrost evolution in Switzerland , 2015 .

[83]  M. Weber,et al.  Development of transverse ridges on rock glaciers: field measurements and laboratory experiments , 2004 .

[84]  M. S. King,et al.  SEISMIC AND ELECTRICAL PROPERTIES OF UNCONSOLIDATED PERMAFROST1 , 1988 .

[85]  W. Brian Whalley,et al.  Rock glaciers , 1987 .

[86]  C. Hilbich Time-lapse refraction seismic tomography for the detection of ground ice degradation , 2010 .

[87]  A. Vieli,et al.  Water controls the seasonal rhythm of rock glacier flow , 2019 .

[88]  L. Giambiagi,et al.  The Basement of the Andean Frontal Cordillera in the Cordón del Plata (Mendoza, Argentina): Geodynamic Evolution , 2012 .

[89]  A. Timur Velocity of compressional waves in porous media at permafrost temperatures , 1968 .

[90]  B. Moorman,et al.  Advances in geophysical methods for permafrost investigations , 2008 .

[91]  E. Groves A Dissertation ON , 1928 .

[92]  J. Knight,et al.  Rock glaciers and the geomorphological evolution of deglacierizing mountains , 2019, Geomorphology.

[93]  R. Delaloye,et al.  Erosion and sediment transfer processes at the front of rapidly moving rock glaciers: Systematic observations with automatic cameras in the western Swiss Alps , 2018 .

[94]  O. Sass,et al.  Comparing geophysical methods for talus slope investigations in the Turtmann valley (Swiss Alps) , 2006 .

[95]  A. Aizebeokhai,et al.  The use of the multiple-gradient array for geoelectrical resistivity and induced polarization imaging. , 2014 .

[96]  T. Dahlin,et al.  A numerical comparison of 2D resistivity imaging with 10 electrode arrays , 2004 .

[97]  H. Diaz,et al.  Threats to Water Supplies in the Tropical Andes , 2006, Science.

[98]  C. Lambiel,et al.  Assessing reliability of 2D resistivity imaging in mountain permafrost studies using the depth of investigation index method , 2003 .

[99]  L. Schrott Die Solarstrahlung als steuernder Faktor im Geosystem der subtropischen semiariden Hochanden (Agua Negra, San Juan, Argentinien) , 1994 .

[100]  D. Barsch Rockglaciers: Indicators for the Present and Former Geoecology in High Mountain Environments , 1996 .

[101]  M. Hayashi,et al.  Groundwater flow and storage within an alpine meadow-talus complex , 2010 .

[102]  M. Phillips,et al.  Factors Controlling Velocity Variations at Short‐Term, Seasonal and Multiyear Time Scales, Ritigraben Rock Glacier, Western Swiss Alps , 2017 .

[103]  Atsushi Ikeda Combination of conventional geophysical methods for sounding the composition of rock glaciers in the Swiss Alps , 2006 .

[104]  W. Brian Whalley,et al.  Rock glaciers and mountain hydrology: A review , 2019, Earth-Science Reviews.

[105]  L. Arenson,et al.  Characteristics of two Rock Glaciers in the Dry Argentinean Andes Based on Initial Surface Investigations , 2010 .

[106]  M. Hoelzle,et al.  Ten years after the drilling through the permafrost of the active rock glacier Murtel, eastern Swiss Alps : Answered questions and new perspectives , 1998 .

[107]  M. Hoelzle,et al.  A spatial and temporal analysis of different periglacial materials by using geoelectrical, seismic and borehole temperature data at Murtèl–Corvatsch, Upper Engadin, Swiss Alps , 2013 .