Partially Single‐Crystalline Mesoporous Nb2O5 Nanosheets in between Graphene for Ultrafast Sodium Storage

Partially single-crystalline mesoporous Nb2 O5 nanosheets with orthorhombic structure in between graphene are scalably fabricated via a simple nanocasting method. The well-designed architecture provides numerous open and short channels for fast diffusion of sodium ion and good electronic conductivity, resulting in an enhanced electrochemical performance and a favorable high-rate behavior for sodium storage.

[1]  Liquan Chen,et al.  Room-temperature stationary sodium-ion batteries for large-scale electric energy storage , 2013 .

[2]  C. Delmas,et al.  P2-Na(x)VO2 system as electrodes for batteries and electron-correlated materials. , 2013, Nature materials.

[3]  Bruce Dunn,et al.  High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. , 2013, Nature materials.

[4]  B. Dunn,et al.  The Effect of Crystallinity on the Rapid Pseudocapacitive Response of Nb2O5 , 2012 .

[5]  Hui Xu,et al.  The morphology-controlled synthesis of a nanoporous-antimony anode for high-performance sodium-ion batteries , 2016 .

[6]  Jun Chen,et al.  3D Porous γ‐Fe2O3@C Nanocomposite as High‐Performance Anode Material of Na‐Ion Batteries , 2015 .

[7]  D. K. Kim,et al.  Graphene-supported Na3V2(PO4)3 as a high rate cathode material for sodium-ion batteries , 2013 .

[8]  D Carlier,et al.  Electrochemical investigation of the P2–NaxCoO2 phase diagram. , 2011, Nature materials.

[9]  Yan Yu,et al.  Superior Sodium Storage in Na2Ti3O7 Nanotube Arrays through Surface Engineering , 2016 .

[10]  John Wang,et al.  Pseudocapacitive contributions to charge storage in highly ordered mesoporous group V transition metal oxides with iso-oriented layered nanocrystalline domains. , 2010, Journal of the American Chemical Society.

[11]  Wei Liu,et al.  3D Porous Sponge‐Inspired Electrode for Stretchable Lithium‐Ion Batteries , 2016, Advanced materials.

[12]  Zaiping Guo,et al.  Boosted Charge Transfer in SnS/SnO2 Heterostructures: Toward High Rate Capability for Sodium-Ion Batteries. , 2016, Angewandte Chemie.

[13]  K. Kang,et al.  A Family of High‐Performance Cathode Materials for Na‐ion Batteries, Na3(VO1−xPO4)2 F1+2x (0 ≤ x ≤ 1): Combined First‐Principles and Experimental Study , 2014 .

[14]  Chao Wu,et al.  An Advanced Sodium‐Ion Battery Composed of Carbon Coated Na3V2(PO4)3 in a Porous Graphene Network , 2015, Advanced materials.

[15]  Yayuan Liu,et al.  Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode , 2016, Nature Communications.

[16]  B. Scrosati,et al.  High Performance Na0.5[Ni0.23Fe0.13Mn0.63]O2 Cathode for Sodium‐Ion Batteries , 2014 .

[17]  Shinichi Komaba,et al.  P2-type Na(x)[Fe(1/2)Mn(1/2)]O2 made from earth-abundant elements for rechargeable Na batteries. , 2012, Nature materials.

[18]  Klaus Müllen,et al.  Graphene-based nanosheets with a sandwich structure. , 2010, Angewandte Chemie.

[19]  K. Kang,et al.  Ordered-mesoporous Nb2O5/carbon composite as a sodium insertion material , 2015 .

[20]  Xiaobo Ji,et al.  Enhanced sodium storage behavior of carbon coated anatase TiO2 hollow spheres , 2015 .

[21]  Yuesheng Wang,et al.  A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries , 2013, Nature Communications.

[22]  Kai He,et al.  Expanded graphite as superior anode for sodium-ion batteries , 2014, Nature Communications.

[23]  Jun Liu,et al.  Uniform yolk–shell Sn4P3@C nanospheres as high-capacity and cycle-stable anode materials for sodium-ion batteries , 2015 .

[24]  Yuegang Zhang,et al.  Fabrication of Nb2O5 Nanosheets for High-rate Lithium Ion Storage Applications , 2015, Scientific Reports.

[25]  Yang Xu,et al.  Enhancement of Sodium Ion Battery Performance Enabled by Oxygen Vacancies. , 2015, Angewandte Chemie.

[26]  Youngsik Kim,et al.  A hybrid solid electrolyte for flexible solid-state sodium batteries , 2015 .

[27]  Kathryn E. Toghill,et al.  A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries. , 2007, Nature materials.

[28]  Bruce Dunn,et al.  High‐Performance Supercapacitors Based on Nanocomposites of Nb2O5 Nanocrystals and Carbon Nanotubes , 2011 .

[29]  Yuekun Lai,et al.  Conductive Inks Based on a Lithium Titanate Nanotube Gel for High‐Rate Lithium‐Ion Batteries with Customized Configuration , 2016, Advanced materials.

[30]  W. Tremel,et al.  Extraordinary Performance of Carbon‐Coated Anatase TiO2 as Sodium‐Ion Anode , 2015, Advanced energy materials.

[31]  K. Kang,et al.  High‐Performance Sodium‐Ion Hybrid Supercapacitor Based on Nb2O5@Carbon Core–Shell Nanoparticles and Reduced Graphene Oxide Nanocomposites , 2016 .