Monoslope and multislope MUSCL methods for unstructured meshes
暂无分享,去创建一个
[1] Jean-Marc Moschetta,et al. Regular Article: Positivity of Flux Vector Splitting Schemes , 1999 .
[2] E. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .
[3] D. Kröner,et al. Convergence of higher order upwind finite volume schemes on unstructured grids for scalar conservation laws in several space dimensions , 1995 .
[4] Serge Piperno,et al. Criteria for the design of limiters yielding efficient high resolution TVD schemes , 1998 .
[5] Thierry Buffard. Analyse de quelques methodes de volumes finis non structures pour la resolution des equations d'euler , 1993 .
[6] K. P.,et al. HIGH RESOLUTION SCHEMES USING FLUX LIMITERS FOR HYPERBOLIC CONSERVATION LAWS * , 2012 .
[7] Timothy J. Barth,et al. The design and application of upwind schemes on unstructured meshes , 1989 .
[8] Thomas J. R. Hughes,et al. Encyclopedia of computational mechanics , 2004 .
[9] Jean-Antoine Désidéri,et al. Compressible flow solvers using unstructured grids , 1992 .
[10] P. Woodward,et al. The numerical simulation of two-dimensional fluid flow with strong shocks , 1984 .
[11] Matthew E. Hubbard,et al. Regular Article: Multidimensional Slope Limiters for MUSCL-Type Finite Volume Schemes on Unstructured Grids , 1999 .
[12] S. Spekreijse. Multigrid solution of monotone second-order discretizations of hyperbolic conservation laws , 1986 .
[13] Chi-Wang Shu,et al. Efficient Implementation of Weighted ENO Schemes , 1995 .
[14] P. Colella. Multidimensional upwind methods for hyperbolic conservation laws , 1990 .
[15] T. Barth,et al. Finite Volume Methods: Foundation and Analysis , 2004 .
[16] A. Jameson. Artificial diffusion, upwind biasing, limiters and their effect on accuracy and multigrid convergence in transonic and hypersonic flows , 1993 .
[17] P. Chévrier,et al. A Van Leer finite volume scheme for the Euler equations on unstructured meshes , 1993 .
[18] S. Osher,et al. Triangle based adaptive stencils for the solution of hyperbolic conservation laws , 1992 .
[19] Chi-Wang Shu,et al. On positivity preserving finite volume schemes for Euler equations , 1996 .
[20] B. V. Leer,et al. Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .
[21] T. Barth,et al. Error estimation and adaptive discretization methods in computational fluid dynamics , 2003 .
[22] R. LeVeque. Numerical methods for conservation laws , 1990 .
[23] D. Kuzmin,et al. High-resolution FEM-TVD schemes based on a fully multidimensional flux limiter , 2004 .
[24] A. Jameson,et al. Finite volume solution of the two-dimensional Euler equations on a regular triangular mesh , 1985 .
[25] P. Raviart,et al. Numerical Approximation of Hyperbolic Systems of Conservation Laws , 1996, Applied Mathematical Sciences.
[26] E. Bertolazzi,et al. A CELL-CENTERED SECOND-ORDER ACCURATE FINITE VOLUME METHOD FOR CONVECTION–DIFFUSION PROBLEMS ON UNSTRUCTURED MESHES , 2004 .
[27] Paul-Henry Cournède,et al. Positivity statements for a mixed-element-volume scheme on fixed and moving grids , 2006 .
[28] D. Kröner. Numerical Schemes for Conservation Laws , 1997 .
[29] B. V. Leer,et al. Towards the Ultimate Conservative Difference Scheme , 1997 .