On the maximum number of odd cycles in graphs without smaller odd cycles

We prove that for each odd integer $k \geq 7$, every graph on $n$ vertices without odd cycles of length less than $k$ contains at most $(n/k)^k$ cycles of length $k$. This generalizes the previous results on the maximum number of pentagons in triangle-free graphs, conjectured by Erdős in 1984, and asymptotically determines the generalized Turan number $\mathrm{ex}(n,C_k,C_{k-2})$ for odd $k$. In contrary to the previous results on the pentagon case, our proof is not computer-assisted.

[1]  Noga Alon,et al.  Many T copies in H-free graphs , 2014, Electron. Notes Discret. Math..

[2]  Hao Li,et al.  The Maximum Number of Triangles in C2k+1-Free Graphs , 2012, Combinatorics, Probability and Computing.

[3]  Ervin Györi,et al.  Generalized Turán problems for even cycles , 2017, J. Comb. Theory, Ser. B.

[4]  Andrzej Grzesik On the maximum number of five-cycles in a triangle-free graph , 2012, J. Comb. Theory, Ser. B.

[5]  Asaf Shapira,et al.  A Generalized Turan Problem and its Applications , 2018, Electron. Colloquium Comput. Complex..

[6]  Jacques Verstraëte Extremal problems for cycles in graphs , 2016 .

[7]  Dan Hefetz,et al.  On the inducibility of cycles , 2018, J. Comb. Theory, Ser. B.

[8]  Ervin Györi On the number of C5's in a triangle-free graph , 1989, Comb..

[9]  Zoltán Füredi,et al.  On 3-uniform hypergraphs without a cycle of a given length , 2014, Discret. Appl. Math..

[10]  Alexander Sidorenko,et al.  What we know and what we do not know about Turán numbers , 1995, Graphs Comb..

[11]  Martin Charles Golumbic,et al.  The inducibility of graphs , 1975 .

[12]  József Balogh,et al.  Maximum density of induced 5-cycle is achieved by an iterated blow-up of 5-cycle , 2016, Eur. J. Comb..

[13]  P. Erdös On an extremal problem in graph theory , 1970 .

[14]  Paul Erdös ON SOME PROBLEMS IN GRAPH THEORY , COMBINATORIAL ANALYSIS AND COMBINATORIAL NUMBER THEORY , 2004 .

[15]  P. Erdös On the structure of linear graphs , 1946 .

[16]  Bernard Lidický,et al.  Pentagons in triangle-free graphs , 2018, Eur. J. Comb..

[17]  L. Moser,et al.  AN EXTREMAL PROBLEM IN GRAPH THEORY , 2001 .

[18]  Jan Hladký,et al.  On the number of pentagons in triangle-free graphs , 2013, J. Comb. Theory, Ser. A.

[19]  M. Simonovits,et al.  The History of Degenerate (Bipartite) Extremal Graph Problems , 2013, 1306.5167.

[20]  Béla Bollobás,et al.  Pentagons vs. triangles , 2008, Discret. Math..

[21]  Jan Volec,et al.  A bound on the inducibility of cycles , 2019, J. Comb. Theory, Ser. A.