Surface Integrity of Broached Inconel 718 and Influence of Thermal Exposure

Inconel 718 is a nickel-based superalloy that is extensively used as a disc material in gas turbine engines. The service life of gas turbine discs is normally governed by the modes of material degr ...

[1]  R. Reed The Superalloys: Fundamentals and Applications , 2006 .

[2]  B. Ramamoorthy,et al.  Machinability investigation of Inconel 718 in high-speed turning , 2009 .

[3]  J. Moverare,et al.  Deformation and damage mechanisms during thermal-mechanical fatigue of a single-crystal superalloy , 2009 .

[4]  J. Cohen,et al.  Residual Stress: Measurement by Diffraction and Interpretation , 1987 .

[5]  C. Richard Liu,et al.  MACHINING TITANIUM AND ITS ALLOYS , 1999 .

[6]  D. Raabe,et al.  Electron channeling contrast imaging of twins and dislocations in twinning-induced plasticity steels under controlled diffraction conditions in a scanning electron microscope , 2009 .

[7]  Don A. Lucca,et al.  Nanoindentation: Measuring methods and applications , 2010 .

[8]  A. Moufki,et al.  A review of developments towards dry and high speed machining of Inconel 718 alloy , 2004 .

[9]  D. Coates Kikuchi-like reflection patterns obtained with the scanning electron microscope , 1967 .

[10]  Subra Suresh,et al.  A new method for estimating residual stresses by instrumented sharp indentation , 1998 .

[11]  Yuebin Guo,et al.  The influence of machining induced residual stress and phase transformation on the measurement of subsurface mechanical behavior using nanoindentation , 2006 .

[12]  M. A. Mannan,et al.  MACHINABILITY OF NICKEL-BASED HIGH TEMPERATURE ALLOYS , 2000 .

[13]  Hubert M. Pollock,et al.  An ultra-low-load penetration hardness tester , 1982 .

[14]  H. Bhadeshia,et al.  Residual stress. Part 2 – Nature and origins , 2001 .

[15]  A. Wilkinson,et al.  Quantitative deformation studies using electron back scatter patterns , 1991 .

[16]  J. Moverare,et al.  Effect of thermal exposure on microstructure and nano-hardness of broached Inconel 718 , 2014 .

[17]  J. Radavich,et al.  A Current T-T-T Diagram for Wrought Alloy 718 , 1991 .

[18]  L. Vijayaraghavan,et al.  Effect of Tool-Work Deflections on the Shape of a Broached Hole , 2000 .

[19]  A. Sadat,et al.  Surface integrity of inconel-718 nickel-base superalloy using controlled and natural contact length tools. Part II: Unlubricated , 1993 .

[20]  X. Sauvage,et al.  Phase transformations in surface layers of machined steels investigated by X-ray diffraction and Mössbauer spectrometry , 2003 .

[21]  E. Nes,et al.  Local lattice curvature and deformation heterogeneities in heavily deformed aluminium , 1989 .

[22]  David W. Hoeppner,et al.  Fretting fatigue case studies of engineering components , 2006 .

[23]  P. Withers,et al.  Residual stress. Part 1 – Measurement techniques , 2001 .

[24]  Yip-Wah Chung,et al.  Nano‐indentation studies of ultrahigh strength carbon nitride thin films , 1993 .

[25]  Dragos Axinte,et al.  An experimental analysis of damped coupled vibrations in broaching , 2007 .

[26]  Suhas S. Joshi,et al.  Effect of machining parameters and cutting edge geometry on surface integrity of high-speed turned Inconel 718 , 2008 .

[27]  B. K. Subhas,et al.  Dimensional instability studies in machining of Inconel 718 nickel based superalloy as applied to aerogas turbine components , 2000 .

[28]  David K. Aspinwall,et al.  Surface integrity of a high speed milled gamma titanium aluminide , 2001 .

[29]  M. R Khajavi,et al.  FAILURE OF FIRST STAGE GAS TURBINE BLADES , 2004 .

[30]  B. L. Josefson,et al.  Modelling chip formation of alloy 718 , 2009 .

[31]  W. Betteridge,et al.  Development of superalloys , 1987 .

[32]  Z. M. Wang,et al.  Tool Life and Surface Integrity When Machining Inconel 718 With PVD- and CVD-Coated Tools , 1999 .

[33]  J. Moverare,et al.  Analysis of Thermal Effect on Residual Stresses of Broached Inconel 718 , 2014 .

[34]  D. Ulutan,et al.  Machining induced surface integrity in titanium and nickel alloys: A review , 2011 .

[35]  Z. M. Wang,et al.  The machinability of nickel-based alloys: a review , 1999 .

[36]  Zdzislaw Mazur,et al.  Failure analysis of a gas turbine blade made of Inconel 738LC alloy , 2005 .

[37]  Esmaeil Poursaeidi,et al.  Failure analysis of a second stage blade in a gas turbine engine , 2008 .

[38]  Lucjan Witek,et al.  Failure analysis of turbine disc of an aero engine , 2006 .

[39]  M. Nouari,et al.  Surface integrity of dry machined titanium alloys , 2009 .

[40]  Jung-Chel Chang,et al.  Failure analysis of gas turbine buckets , 2003 .

[41]  W. König,et al.  Residual Stresses — Measurement and Causes in Machining Processes , 1982 .

[42]  Mahmudur Rahman,et al.  An investigation of cutting forces and surface damage in high-speed turning of inconel 718 , 2007 .

[43]  Richard E. DeVor,et al.  Machining-Induced Residual Stress: Experimentation and Modeling , 2000 .

[44]  Ru Lin Peng,et al.  Residual Stresses in a Nickel-Based Superalloy Introduced by Turning , 2002 .

[45]  Joseph I. Goldstein,et al.  Scanning Electron Microscopy and X-Ray Microanalysis: A Text for Biologists, Materials Scientists, and Geologists , 1981 .

[46]  David K. Aspinwall,et al.  The effect of machined topography and integrity on fatigue life , 2004 .

[47]  Yuebin Guo,et al.  A fundamental study on the impact of surface integrity by hard turning on rolling contact fatigue , 2006 .

[48]  Nabil Gindy,et al.  An example of selection of the cutting conditions in broaching of heat-resistant alloys based on cutting forces, surface roughness and tool wear , 2005 .

[49]  S. Mall,et al.  Combined experimental–numerical investigation of fretting fatigue crack initiation , 2001 .

[50]  R. Recht Catastrophic Thermoplastic Shear , 1964 .

[51]  A. Jawaid,et al.  The effect of machining on surface integrity of titanium alloy Ti–6% Al–4% V , 2005 .

[52]  D. S. Duvall,et al.  PRECIPITATION IN NICKEL-BASE ALLOY 718. , 1969 .

[53]  William D. Nix,et al.  Effects of the substrate on the determination of thin film mechanical properties by nanoindentation , 2002 .

[54]  G. Pharr,et al.  An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments , 1992 .

[55]  M. Whelan,et al.  Some comments on the interpretation of the 'kikuchi-like reflection patterns' observed by scanning electron microscopy , 1967 .

[56]  M. C. Shaw Metal Cutting Principles , 1960 .

[57]  Marco J. Starink,et al.  Short crack initiation and growth at 600 °C in notched specimens of Inconel718 , 2003 .

[58]  Vadim V. Silberschmidt,et al.  Analysis of material response to ultrasonic vibration loading in turning Inconel 718 , 2006 .

[59]  Fritz Klocke,et al.  Broaching of Inconel 718 with cemented carbide , 2013, Prod. Eng..

[60]  Hannu Hänninen,et al.  Formation of Shear Bands and Strain-induced Martensite During Plastic Deformation of Metastable Austenitic Stainless Steels , 2007 .

[61]  B. J. Griffiths,et al.  Mechanisms of White Layer Generation With Reference to Machining and Deformation Processes , 1987 .

[62]  Keith Ridgway,et al.  An analysis of the residual stresses generated in Inconel 718™ when turning , 2006 .

[63]  J. W. Brooks,et al.  Metallurgical Stability of Inconel Alloy 718 , 1988 .

[64]  J. Ståhl,et al.  Identification of Subsurface Deformation in Machining of Inconel 718 , 2011 .

[65]  Christopher Saldana,et al.  Surface integrity analysis of machined Inconel 718 over multiple length scales , 2012 .

[66]  Bharat Bhushan,et al.  NANOINDENTATION HARDNESS MEASUREMENTS USING ATOMIC FORCE MICROSCOPY , 1994 .

[67]  Gao Dong,et al.  Study of cutting deformation in machining nickel-based alloy Inconel 718 , 2011 .

[68]  Wanci Shen,et al.  Microstructures of surface white layer and internal white adiabatic shear band , 1997 .

[69]  A. Sadat,et al.  Surface integrity of inconel-718 nickel-base superalloy using controlled and natural contact length tools. part I: Lubricated , 1992 .

[70]  Patrick Schwaller,et al.  Observation of fracture and plastic deformation during indentation and scratching inside the scanning electron microscope , 2004 .

[71]  M. Frary,et al.  Precipitate Redistribution during Creep of Alloy 617 , 2009 .

[72]  D. S. Duvall,et al.  Coherency strengthening in Ni base alloys hardened by DO22 γ′ precipitates , 1974, Metallurgical and Materials Transactions B.

[73]  R. Winholtz,et al.  Relation of elastic strain distributions determined by diffraction to corresponding stress distributions , 1996 .

[74]  E. Ezugwu Key improvements in the machining of difficult-to-cut aerospace superalloys , 2005 .

[75]  S. Timothy,et al.  The structure of adiabatic shear bands in metals: A critical review☆ , 1987 .

[76]  Keith Ridgway,et al.  Workpiece Surface Integrity and Tool Life Issues When Turning Inconel 718™ Nickel Based Superalloy , 2004 .

[77]  W. Oliver,et al.  Hardness measurement at penetration depths as small as 20 nm , 1983 .

[78]  Mukul Kumar,et al.  Electron Backscatter Diffraction in Materials Science , 2000 .

[79]  George M. Pharr,et al.  Measurement of Thin Film Mechanical Properties Using Nanoindentation , 1992 .

[80]  Wisley Falco Sales,et al.  Machining of nickel-base, Inconel 718, alloy with ceramic tools under finishing conditions with various coolant supply pressures , 2005 .

[81]  Paul S. Prevéy,et al.  X-RAY DIFFRACTION RESIDUAL STRESS TECHNIQUES , 1986 .

[82]  S. Kocańda Fatigue Failure of Metals , 1978 .

[83]  Jinming Zhou,et al.  Study of surface quality in high speed turning of Inconel 718 with uncoated and coated CBN tools , 2012 .

[84]  Nabil Gindy,et al.  Tool condition monitoring in broaching , 2003 .

[85]  J. Radavich Metallography of Alloy 718 , 1988 .

[86]  K. Ramachandra,et al.  Simultaneous Optimization of Machining Parameters for Dimensional Instability Control in Aero Gas Turbine Components Made of Inconel 718 Alloy , 2000 .

[87]  I. Choudhury,et al.  Machinability of nickel-base super alloys: a general review , 1998 .

[88]  F. Lenrick,et al.  Characterization of White Layer Generated when Turning Aged Inconel 718 , 2011 .