A Study of Permutation Polynomials over Finite Fields

iv

[1]  Kaisa Nyberg,et al.  Differentially Uniform Mappings for Cryptography , 1994, EUROCRYPT.

[2]  L. Dickson Linear Groups, with an Exposition of the Galois Field Theory , 1958 .

[3]  Lei Hu,et al.  Two classes of permutation polynomials over finite fields , 2012, Finite Fields Their Appl..

[4]  J. Hirschfeld Projective Geometries Over Finite Fields , 1980 .

[5]  L. Carlitz,et al.  Some theorems on permutation polynomials , 1962 .

[6]  Tadao Kasami,et al.  The Weight Enumerators for Several Clauses of Subcodes of the 2nd Order Binary Reed-Muller Codes , 1971, Inf. Control..

[7]  Tor Helleseth,et al.  New Kloosterman sums identities over F2m for all m , 2003 .

[8]  H. Dobbertin Almost Perfect Nonlinear Power Functions on GF(2n): A New Case for n Divisible by 5 , 2001 .

[9]  Linear transformations of a finite field , 1974 .

[10]  H. Lausch,et al.  Algebra of Polynomials , 1974 .

[11]  Xiang-dong Hou,et al.  Two classes of permutation polynomials over finite fields , 2011, J. Comb. Theory, Ser. A.

[12]  Rudolf Lide,et al.  Finite fields , 1983 .

[13]  Pascale Charpin,et al.  When does G(x)+gammaTr(H(x)) permute Fpn? , 2009, Finite Fields Their Appl..

[14]  Cunsheng Ding,et al.  Permutation polynomials over finite fields from a powerful lemma , 2011, Finite Fields Their Appl..

[15]  H. Niederreiter,et al.  Complete mappings of finite fields , 1982, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.

[16]  K. Conrad,et al.  Finite Fields , 2018, Series and Products in the Development of Mathematics.

[17]  Xiang-dong Hou,et al.  A Class of Permutation Binomials over Finite Fields , 2012, 1210.0881.

[18]  Xiang-dong Hou,et al.  Reversed Dickson polynomials over finite fields , 2009, Finite Fields Their Appl..

[19]  Xiang-Dong Hou,et al.  A new approach to permutation polynomials over finite fields , 2012, Finite Fields Their Appl..

[20]  L. Dickson The Analytic Representation of Substitutions on a Power of a Prime Number of Letters with a Discussion of the Linear Group. , 1896 .

[21]  Qiang Wang,et al.  On constructing permutations of finite fields , 2011, Finite Fields Their Appl..

[22]  S Chien SOLUTION TO A PROBLEM OF S. BANK REGARDING EXPONENT OF CONVERGENCE OF ZEROS OF THE SOLUTIONS OF DIFFERENTIAL EQUATION f″+Af=0 , 1985 .

[23]  Xiang-dong Hou,et al.  A piecewise construction of permutation polynomials over finite fields , 2012, Finite Fields Their Appl..

[24]  Xiang-dong Hou,et al.  Necessary conditions for reversed Dickson polynomials to be permutational , 2010, Finite Fields Their Appl..

[25]  Pascale Charpin,et al.  Monomial functions with linear structure and permutation polynomials , 2010 .

[26]  K. T. Arasu,et al.  Geometry, codes and difference sets: exceptional connections , 2002 .

[27]  Cunsheng Ding,et al.  Permutation polynomials of the form (xp −x +δ)s +L(x) , 2008 .

[28]  José E. Marcos,et al.  Specific permutation polynomials over finite fields , 2008, Finite Fields Their Appl..

[29]  Neranga Fernando,et al.  A new approach to permutation polynomials over finite fields, II , 2012, Finite Fields Their Appl..

[30]  Leonard Carlitz,et al.  The number of solutions of a special system of equations in a finite field , 1966 .

[31]  Joseph L. Yucas,et al.  Dickson polynomials , 2013, Handbook of Finite Fields.

[32]  Yann Laigle-Chapuy,et al.  Permutation polynomials and applications to coding theory , 2007, Finite Fields Their Appl..