The Labeled Multi-Bernoulli Filter for Multitarget Tracking With Glint Noise

A labeled multi-Bernoulli (LMB) filter is presented to perform multitarget tracking (MTT) for the glint noise. The measurement noise is modeled as a multivariate Student-<inline-formula><tex-math notation="LaTeX">$t$</tex-math></inline-formula> process. The variational Bayesian method is applied in the LMB framework with the augmented state. The predictive likelihood is calculated via minimizing the Kullback–Leibler divergence by the variational lower bound. Simulation results show that our approach is effective in MTT with the glint noise.

[1]  Simo Särkkä,et al.  Non-linear noise adaptive Kalman filtering via variational Bayes , 2013, 2013 IEEE International Workshop on Machine Learning for Signal Processing (MLSP).

[2]  Wen-Rong Wu,et al.  Feedback median filter for robust preprocessing of glint noise , 2000, IEEE Trans. Aerosp. Electron. Syst..

[3]  Monish D. Tandale,et al.  Particle Filter for Ballistic Target Tracking with Glint Noise , 2010 .

[4]  Christian Lundquist,et al.  Extended Target Tracking using a Gaussian-Mixture PHD Filter , 2017, IEEE Transactions on Aerospace and Electronic Systems.

[5]  Chen Shen,et al.  A Robust Particle Filtering Algorithm With Non-Gaussian Measurement Noise Using Student-t Distribution , 2014, IEEE Signal Processing Letters.

[6]  Matthew J. Beal Variational algorithms for approximate Bayesian inference , 2003 .

[7]  Ba-Ngu Vo,et al.  An implementation of the multi-sensor generalized labeled multi-Bernoulli filter via Gibbs sampling , 2017, 2017 20th International Conference on Information Fusion (Fusion).

[8]  Simo Särkkä,et al.  Recursive outlier-robust filtering and smoothing for nonlinear systems using the multivariate student-t distribution , 2012, 2012 IEEE International Workshop on Machine Learning for Signal Processing.

[9]  Mohamed Barbary,et al.  Improved Multi-Bernoulli Filter for Extended Stealth Targets Tracking Based on Sub-Random Matrices , 2016, IEEE Sensors Journal.

[10]  Hong-Wei Ge,et al.  An improved multi-target tracking algorithm based on CBMeMBer filter and variational Bayesian approximation , 2013, Signal Process..

[11]  Ba-Ngu Vo,et al.  Multiple Extended Target Tracking With Labeled Random Finite Sets , 2015, IEEE Transactions on Signal Processing.

[12]  W. Wu,et al.  Target racking with glint noise , 1993 .

[13]  Ronald P. S. Mahler,et al.  Advances in Statistical Multisource-Multitarget Information Fusion , 2014 .

[14]  M. Mumford,et al.  A Statistical Glint/Radar Cross Section Target Model , 1983, IEEE Transactions on Aerospace and Electronic Systems.

[15]  Yonggang Zhang,et al.  A robust Gaussian approximate filter for nonlinear systems with heavy tailed measurement noises , 2016, 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[16]  Christopher M. Bishop,et al.  Pattern Recognition and Machine Learning (Information Science and Statistics) , 2006 .

[17]  Anna Freud,et al.  Design And Analysis Of Modern Tracking Systems , 2016 .

[18]  Stefan Schaal,et al.  Robust Gaussian filtering using a pseudo measurement , 2015, 2016 American Control Conference (ACC).

[19]  Ronald P. S. Mahler,et al.  Statistical Multisource-Multitarget Information Fusion , 2007 .

[20]  R. Mahler Multitarget Bayes filtering via first-order multitarget moments , 2003 .

[21]  Ba-Ngu Vo,et al.  The Cardinality Balanced Multi-Target Multi-Bernoulli Filter and Its Implementations , 2009, IEEE Transactions on Signal Processing.

[22]  G. Hewer,et al.  Robust Preprocessing for Kalman Filtering of Glint Noise , 1987, IEEE Transactions on Aerospace and Electronic Systems.

[23]  Zhongliang Jing,et al.  A Consensus Nonlinear Filter With Measurement Uncertainty in Distributed Sensor Networks , 2017, IEEE Signal Processing Letters.

[24]  Ba-Ngu Vo,et al.  A Consistent Metric for Performance Evaluation of Multi-Object Filters , 2008, IEEE Transactions on Signal Processing.

[25]  Ba-Ngu Vo,et al.  Labeled Random Finite Sets and Multi-Object Conjugate Priors , 2013, IEEE Transactions on Signal Processing.

[26]  Thia Kirubarajan,et al.  Labeled Random Finite Sets With Moment Approximation , 2017, IEEE Transactions on Signal Processing.

[27]  Junping Du,et al.  PHD filter for multi-target tracking with glint noise , 2014, Signal Process..

[28]  Eduardo Mario Nebot,et al.  Approximate Inference in State-Space Models With Heavy-Tailed Noise , 2012, IEEE Transactions on Signal Processing.

[29]  R. Everson,et al.  Robust Autoregression: Student-t Innovations Using Variational Bayes , 2011, IEEE Transactions on Signal Processing.

[30]  Yaakov Bar-Shalom,et al.  Multitarget-Multisensor Tracking: Applications and Advances , 1992 .

[31]  I. Bilik,et al.  Maneuvering Target Tracking in the Presence of Glint using the Nonlinear Gaussian Mixture Kalman Filter , 2010, IEEE Transactions on Aerospace and Electronic Systems.

[32]  Huang Gao-ming,et al.  Variational Bayesian labeled multi-Bernoulli filter with unknown sensor noise statistics , 2016 .

[33]  Claudio Fantacci,et al.  The Marginalized $\delta$-GLMB Filter , 2015, 1501.00926.

[34]  Ba-Ngu Vo,et al.  An Efficient Implementation of the Generalized Labeled Multi-Bernoulli Filter , 2016, IEEE Transactions on Signal Processing.

[35]  Hong-Wei Ge,et al.  Adaptive probability hypothesis density filter based on variational bayesian approximation for multi-target tracking , 2013 .

[36]  Ba-Ngu Vo,et al.  Labeled Random Finite Sets and the Bayes Multi-Target Tracking Filter , 2013, IEEE Transactions on Signal Processing.

[37]  Simo Särkkä,et al.  Recursive Noise Adaptive Kalman Filtering by Variational Bayesian Approximations , 2009, IEEE Transactions on Automatic Control.

[38]  Y. Bar-Shalom,et al.  An interacting multiple model approach for target tracking with glint noise , 1994, Proceedings of 1994 IEEE National Radar Conference.