Quick atmospheric correction code: algorithm description and recent upgrades

Abstract. The quick atmospheric correction (QUAC) code performs atmospheric correction on multi- and hyperspectral imagery spanning all or part of the visible and near infrared–short wave infrared spectral range, ∼400−2500  nm. It utilizes an in-scene approach, requiring only approximate specification of sensor band locations (i.e., central wavelengths) and their radiometric calibration; no additional metadata is required. Because QUAC does not involve first principles radiative-transfer calculations, it is significantly faster than physics-based methods; however, it is also more approximate. We present a detailed description of the QUAC algorithm, highlighting recent accuracy improvements. Example results for several multi-and hyperspectral data sets are presented, and comparisons are made to more rigorous correction approaches.

[1]  L. S. Bernstein,et al.  In-scene-based atmospheric correction of uncalibrated VISible-SWIR (VIS-SWIR) hyper- and multi-spectral imagery , 2008, Remote Sensing.

[2]  Gail P. Anderson,et al.  Atmospheric correction of spectral imagery: evaluation of the FLAASH algorithm with AVIRIS data , 2003, SPIE Defense + Commercial Sensing.

[3]  Gail P. Anderson,et al.  Atmospheric correction for shortwave spectral imagery based on MODTRAN4 , 1999, Optics & Photonics.

[4]  James Slusser,et al.  Validation and refinement of hyperspectral/multispectral atmospheric compensation using shadowband radiometers , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[5]  S. Adler-Golden,et al.  Atmospheric Correction for Short-wave Spectral Imagery Based on MODTRAN 4 , 2000 .

[6]  Anthony J. Ratkowski,et al.  Validation of the QUick atmospheric correction (QUAC) algorithm for VNIR-SWIR multi- and hyperspectral imagery , 2005 .

[7]  Z. Ahmad,et al.  Atmospheric correction algorithm for hyperspectral remote sensing of ocean color from space. , 2000, Applied optics.

[8]  F. Kruse Use of airborne imaging spectrometer data to map minerals associated with hydrothermally altered rocks in the northern grapevine mountains, Nevada, and California , 1988 .

[9]  Craig J. Miller,et al.  Performance assessment of ACORN atmospheric correction algorithm , 2002, SPIE Defense + Commercial Sensing.

[10]  J. Boardman,et al.  Mineral mapping at Cuprite, Nevada with a 63-channel imaging spectrometer , 1990 .

[11]  Lawrence S. Bernstein,et al.  A new method for atmospheric correction and aerosol optical property retrieval for VIS-SWIR multi- and hyperspectral imaging sensors: QUAC (QUick atmospheric correction) , 2005, Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS '05..

[12]  Dar A. Roberts,et al.  Characterization and Compensation of the Atmosphere for the Inversion of AVIRIS Calibrated Radiance to Apparent Surface Reflectance , 1996 .

[13]  John H. Gruninger,et al.  Application of convex cone analysis to hyperspectral and multispectral scenes , 2003, SPIE Remote Sensing.

[14]  Marcos J. Montes,et al.  New algorithm for atmospheric correction of hyperspectral remote sensing data , 2001, SPIE Defense + Commercial Sensing.

[15]  David P. Miller,et al.  Status of atmospheric correction using a MODTRAN4-based algorithm , 2000, SPIE Defense + Commercial Sensing.

[16]  Alexander F. H. Goetz,et al.  HIGH-ACCURACY ATMOSPHERE CORRECTION FOR HYPERSPECTRAL DATA ( HATCH ) , 2000 .

[17]  A. Goetz,et al.  Software for the derivation of scaled surface reflectances from AVIRIS data , 1992 .

[18]  R. Richter,et al.  Geo-atmospheric processing of airborne imaging spectrometry data. Part 2: Atmospheric/topographic correction , 2002 .

[19]  Marsha Fox,et al.  Speed and accuracy improvements in FLAASH atmospheric correction of hyperspectral imagery , 2012 .

[20]  D. Roberts,et al.  Comparison of various techniques for calibration of AIS data , 1986 .

[21]  Jessica A. Faust,et al.  Imaging Spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) , 1998 .

[22]  Gail P. Anderson,et al.  Atmospheric correction of spectral imagery: evaluation of the FLAASH algorithm with AVIRIS data , 2002, Applied Imagery Pattern Recognition Workshop, 2002. Proceedings..