Analysis of Virus Textures in Transmission Electron Microscopy Images

In this paper we propose an ensemble of texture descriptors for analyzing virus textures in transmission electron microscopy images. Specifically, we present several novel multi-quinary (MQ) codings of local binary pattern (LBP) variants: the MQ version of the dense LBP, the MQ version of the rotation invariant co-occurrence among adjacent LBPs, and the MQ version of the LBP histogram Fourier. To reduce computation time as well as to improve performance, a feature selection approach is utilized to select the thresholds used in the MQ approaches. In addition, we propose new variants of descriptors where two histograms, instead of the standard one histogram, are produced for each descriptor. The two histograms (one for edge pixels and the other for non-edge pixels) are calculated for training two different SVMs, whose results are then combined by sum rule. We show that a bag of features approach works well with this problem. Our experiments, using a publicly available dataset of 1500 images with 15 classes and same protocol as in previous works, demonstrate the superiority of our new proposed ensemble of texture descriptors. The MATLAB code of our approach is available at https://www.dei.unipd.it/node/2357.

[1]  Kazuhiro Fukui,et al.  Rotation Invariant Co-occurrence among Adjacent LBPs , 2012, ACCV Workshops.

[2]  L. Nanni,et al.  Non-Binary Coding for Texture Descriptors in Sub-Cellular and Stem Cell Image Classification , 2013 .

[3]  Bogdan J. Matuszewski,et al.  Hierarchical iterative Bayesian approach to automatic recognition of biological viruses in electron microscope images , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[4]  Bailing Zhang,et al.  Classification of Subcellular Phenotype Images by Decision Templates for Classifier Ensemble , 2010 .

[5]  Gunilla Borgefors,et al.  A refined circular template matching method for classification of human cytomegalovirus capsids in TEM images , 2004, Comput. Methods Programs Biomed..

[6]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[8]  Matti Pietikäinen,et al.  Rotation Invariant Image Description with Local Binary Pattern Histogram Fourier Features , 2009, SCIA.

[9]  H. Gelderblom Structure and Classification of Viruses , 1996 .

[10]  Sara E. Miller,et al.  Modern Uses of Electron Microscopy for Detection of Viruses , 2009, Clinical Microbiology Reviews.

[11]  Matti Pietikäinen,et al.  Efficient Image Appearance Description Using Dense Sampling Based Local Binary Patterns , 2012, ACCV.

[12]  Matti Pietikäinen,et al.  Texture Classification using a Linear Configuration Model based Descriptor , 2011, BMVC.

[13]  Yan Ke,et al.  PCA-SIFT: a more distinctive representation for local image descriptors , 2004, CVPR 2004.

[14]  Fredrik Kahl,et al.  HEp-2 staining pattern classification , 2012, Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012).

[15]  Loris Nanni,et al.  Ensemble of different local descriptors, codebook generation methods and subwindow configurations for building a reliable computer vision system , 2014 .

[16]  Xueming Qian,et al.  PLBP: An effective local binary patterns texture descriptor with pyramid representation , 2011, Pattern Recognit..

[17]  Hannah Ong Virus recognition in electron microscope images using higher order spectral features , 2006 .

[18]  L. Nanni,et al.  Virus image classification using different texture descriptors , 2014 .

[19]  Abdelhamid Abdesselam,et al.  Improving Local Binary Patterns Techniques by Using Edge Information , 2013 .

[20]  Ida-Maria Sintorn,et al.  Virus Texture Analysis Using Local Binary Patterns and Radial Density Profiles , 2011, CIARP.

[21]  Matti Pietikäinen,et al.  Discriminative features for texture description , 2012, Pattern Recognit..

[22]  Ahmad Reza Naghsh-Nilchi,et al.  Noise tolerant local binary pattern operator for efficient texture analysis , 2012, Pattern Recognit. Lett..

[23]  Josef Kittler,et al.  Floating search methods in feature selection , 1994, Pattern Recognit. Lett..

[24]  S S Biel,et al.  Diagnostic virology--the need for electron microscopy: a discussion paper. , 2001, Journal of clinical virology : the official publication of the Pan American Society for Clinical Virology.

[25]  Trygve Randen,et al.  Filtering for Texture Classification: A Comparative Study , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  Roland J. Baddeley,et al.  High frequency edges (but not contrast) predict where we fixate: A Bayesian system identification analysis , 2006, Vision Research.

[27]  Nicolas Hervé,et al.  Statistical color texture descriptors for histological images analysis , 2011, 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[28]  Margrit Betke,et al.  Cell morphology classification and clutter mitigation in phase-contrast microscopy images using machine learning , 2011, Machine Vision and Applications.