Scalable algorithms for the solution of Navier's equations of elasticity

Very large scale mathematical modelling such as accurate modelling using Navier's equations of elasticity needs both massively parallel computing and scalable algorithms. It is shown in this paper that efficient methods must be scalable with respect to the speedup measured as the ratio of the computing time of the best sequential algorithm on one processor and the computing time of the parallel algorithm on p processors. For a class of multilevel methods for elliptic partial differential equations it is shown how to balance the coarsest mesh size to the finest and the number of processors to the size of the problem to get smallest computing time and maximal efficiency. It turns out that the number of processors should grow slowly in proportion with the problem size. Further, it should grow slightly slower (by a logarithmic or a polylogarithmic function) for asymptotically maximal efficiency than the number of processors required for minimal computing time.

[1]  Patrick H. Worley,et al.  The Effect of Time Constraints on Scaled Speedup , 1990, SIAM J. Sci. Comput..

[2]  O. Axelsson Preconditioning of Indefinite Problems by Regularization , 1979 .

[3]  Owe Axelsson,et al.  Algebraic multilevel iteration method for Stieltjes matrices , 1994, Numer. Linear Algebra Appl..

[4]  Anton Schüller,et al.  Multigrid methods on parallel computers - A survey of recent developments , 1991, IMPACT Comput. Sci. Eng..

[5]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[6]  Ragnar Winther,et al.  A Preconditioned Iterative Method for Saddlepoint Problems , 1992, SIAM J. Matrix Anal. Appl..

[7]  O. Axelsson NUMERICAL ALGORITHMS FOR INDEFINITE PROBLEMS , 1984 .

[8]  O. Axelsson,et al.  Algebraic multilevel preconditioning methods, II , 1990 .

[9]  Owe Axelsson,et al.  Variable-step multilevel preconditioning methods, I: Self-adjoint and positive definite elliptic problems , 1994, Numer. Linear Algebra Appl..

[10]  E. De Sturler Iterative methods on distributed memory computers , 1994 .

[11]  Vijay P. Kumar,et al.  Analyzing Scalability of Parallel Algorithms and Architectures , 1994, J. Parallel Distributed Comput..

[12]  I. Gustafsson,et al.  Preconditioning and two-level multigrid methods of arbitrary degree of approximation , 1983 .

[13]  O. Axelsson,et al.  A black box generalized conjugate gradient solver with inner iterations and variable-step preconditioning , 1991 .

[14]  Dennis J. Yelton,et al.  A Prototype Scalable, Object-Oriented Finite Element Solver on Multicomputers , 1994, J. Parallel Distributed Comput..

[15]  Patrick H. Worley Limits on Parallelism in the Numerical Solution of Linear Partial Differential Equations , 1991, SIAM J. Sci. Comput..

[16]  Anant Agarwal,et al.  Scalability of parallel machines , 1991, CACM.

[17]  O. Axelsson,et al.  Finite element solution of boundary value problemes - theory and computation , 2001, Classics in applied mathematics.

[18]  Andrew Davison,et al.  Twelve Ways to Fool the Masses When Giving Performance Results on Parallel Computers , 1995 .

[19]  Robert E. Benner,et al.  Development of Parallel Methods for a $1024$-Processor Hypercube , 1988 .

[20]  R. Verfürth A combined conjugate gradient - multi-grid algorithm for the numerical solution of the Stokes problem , 1984 .

[21]  Paul O. Frederickson,et al.  Parallel Superconvergent Multigrid , 1987 .

[22]  O. Axelsson Iterative solution methods , 1995 .

[23]  David H. Bailey Misleading Performance Reporting in the Supercomputing Field , 1992, Sci. Program..

[24]  Andrew J. Wathen,et al.  Fast iterative solution of stabilised Stokes systems, part I: using simple diagonal preconditioners , 1993 .

[25]  Garrett Birkhoff,et al.  Elliptic Problem Solvers II , 1984 .

[26]  David J. Silvester Optimal low order finite element methods for incompressible flow , 1994 .

[27]  Wolfgang Fichtner,et al.  A Set of New Mapping and Coloring Heuristics for Distributed-Memory Parallel Processors , 1992, SIAM J. Sci. Comput..

[28]  Alex Pothen,et al.  PARTITIONING SPARSE MATRICES WITH EIGENVECTORS OF GRAPHS* , 1990 .

[29]  Ken Kennedy,et al.  Performance of parallel processors , 1989, Parallel Comput..

[30]  Owe Axelsson On Iterative Solution of Elliptic Difference Equations on a Mesh-Connected Array of Processors , 1989, Int. J. High Speed Comput..

[31]  P. Vassilevski Hybrid V-cycle algebraic multilevel preconditioners , 1992 .