BEHAVIOR OF THERMALLY MODIFIED WOOD TO BIODETERIORATION BY XYLOPHAGE FUNGI

Thermally modified wood undergoes chemical, physical, and mechanical modifications, resulting in changes in resistance to wood biodegrading agents. The objective of this study was to evaluate the resistance to biodeterioration of thermally modified wood by the industrial process VAP HolzSysteme ® of Eucalyptus grandis , Pinus taeda and Tectona grandis , submitted to the Lentinula edodes fungi (brown rot) and Pleurotus djamor fungi (white rot), and to analyze the chemical properties, contents of holocellulose, lignin, total extracts, and ash, before and after biodeterioration. Three treatments were considered for each species: Control - wood in natura , modified wood at 140 °C and 160 °C. The specimens were made according to ASTM D 1413 (ASTM, 1994), in a total of

[1]  J. Brito,et al.  Biological resistance of heat-treated wood of Pinus caribaea and Eucalyptus saligna , 2019, Maderas. Ciencia y tecnología.

[2]  W. Darmawan,et al.  Characterization of thermally modified short and long rotation teaks and the effects on coatings performance , 2019, Maderas. Ciencia y tecnología.

[3]  R. A. Garcia,et al.  Infrared spectroscopy of the surface of thermally-modified teak juvenile wood , 2018 .

[4]  F. Kačík,et al.  Impact of thermal modification on color and chemical changes of spruce and oak wood , 2018, Journal of Wood Science.

[5]  G. I. Muñiz,et al.  Potential use of nir and visible spectroscopy to analyze chemical properties of thermally treated wood , 2018 .

[6]  H. Pereira,et al.  Natural durability assessment of thermo-modified young wood of eucalyptus , 2018 .

[7]  C. Bevilacqua,et al.  Capacidade dos fungos lignocelulolíticos em degradar polímeros de lodo de esgoto , 2017 .

[8]  G. I. Muñiz,et al.  Effect of the Brazilian thermal modification process on the chemical composition of Eucalyptus grandis juvenile wood: Part 1: Cell wall polymers and extractives contents , 2016 .

[9]  H. Sahin,et al.  Changes in the chemical structure and decay resistance of heat-treated narrow-leaved ash wood , 2015 .

[10]  B. D. Mattos,et al.  Effect of thermal treatments on technological properties of wood from two Eucalyptus species. , 2015, Anais da Academia Brasileira de Ciencias.

[11]  F. W. Calonego,et al.  Behavior of the brown-rot fungus Gloeophyllum trabeum on thermally-modified Eucalyptus grandis wood , 2013 .

[12]  Javan Pereira Motta,et al.  Resistência natural da madeira de Tectona grandis em ensaio de laboratório , 2013 .

[13]  H. Pereira,et al.  Chemical changes of heat treated pine and eucalypt wood monitored by FTIR , 2013 .

[14]  D. C. Batista Modificação térmica da madeira de Eucalyptus grandis em escala industrial pelo processo brasileiro Vap HolzSysteme , 2013 .

[15]  Gisely de Lima Oliveira,et al.  Efeito da termorretificação nas propriedades físicas e químicas da madeira de Pinus caribaea , 2013 .

[16]  J. Brito,et al.  Effect of thermal treatment on the chemical characteristics of wood from Eucalyptus grandis W. Hill ex Maiden under different atmospheric conditions , 2012 .

[17]  D. Sandberg Thermo-Hydro-Mechanical Wood Processing , 2012 .

[18]  E. S. Carlos,et al.  Efeito do tratamento térmico nas propriedades químicas, físicas e mecânicas em elementos estruturais de Eucalipto citriodora e Pinus taeda , 2012 .

[19]  Xiang Liu,et al.  INFLUENCE OF STEAM PRESSURE ON CHEMICAL CHANGES OF HEAT-TREATED MONGOLIAN PINE WOOD , 2011 .

[20]  H. Pereira,et al.  Chemistry and ecotoxicity of heat-treated pine wood extractives , 2011, Wood Science and Technology.

[21]  N. Brosse,et al.  Investigation of the chemical modifications of beech wood lignin during heat treatment , 2010 .

[22]  Carol A. Clausen,et al.  Biodeterioration of wood , 2010 .

[23]  S. Curling,et al.  On the effect of heat on the chemical composition and dimensions of thermally-modified wood , 2009 .

[24]  Helena Pereira,et al.  Extractive composition and summative chemical analysis of thermally treated eucalypt wood , 2008 .

[25]  C. Lima,et al.  RESISTÊNCIA NATURAL DE SETE MADEIRAS A FUNGOS E CUPINS XILÓFAGOS EM CONDIÇÕES DE LABORATÓRIO , 2007 .

[26]  M. Boonstra,et al.  Optimisation of a two-stage heat treatment process: durability aspects , 2006, Wood Science and Technology.

[27]  J. C. Silva,et al.  Influência da idade e da posição ao longo do tronco na composição química da madeira de Eucalyptus grandis Hill ex. Maiden , 2005 .

[28]  H. Militz,et al.  Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat-treated wood , 2005, Holz als Roh- und Werkstoff.

[29]  B. Sundqvist Colour changes and acid formation in wood during heating , 2004 .

[30]  J. Weiland,et al.  Study of chemical modifications and fungi degradation of thermally modified wood using DRIFT spectroscopy , 2003, Holz als Roh- und Werkstoff.

[31]  J. Paes Resistência natural da madeira de Corymbia maculata (Hook.) K.D.Hill & L.A.S. Johnson a fungos e cupins xilófagos, em condições de laboratório , 2002 .

[32]  A. Pizzi,et al.  Durability of heat-treated wood , 2002, Holz als Roh- und Werkstoff.

[33]  B. Li,et al.  Comparative studies of thermal degradation between larch lignin and manchurian ash lignin , 2002 .

[34]  C. Clausen,et al.  An experimental method to simulate incipient decay of wood by basidiomycete fungi . , 2000 .

[35]  Helena Pereira,et al.  The Effect of Long Term Treatment at 100°C–150°C on Structure, Chemical Composition and Compression Behaviour of Cork , 1994 .

[36]  M. Hale,et al.  Wood : decay, pests, and protection , 1993 .

[37]  Engenheiro Florestal,et al.  A DEGRADAÇÃO DA MADEIRA E SUA PRESERVAÇÃO , 1988 .