Passivating Perovskites in Air Via an Alternating Cation Interlayer Phase Formed by Benzylamine Vapor Fumigation

[1]  P. Kamat,et al.  How Stable Is the 2D/3D Interface of Metal Halide Perovskite under Light and Heat? , 2022, ACS Energy Letters.

[2]  Liying Yang,et al.  Strain Relaxation on Perovskite Surface via Light-Enhanced Ionic Homogeneity. , 2022, The journal of physical chemistry letters.

[3]  Wei Peng,et al.  Correlating the perovskite/polymer multi-mode reactions with deep-level traps in perovskite solar cells , 2022, Joule.

[4]  Muhammad A. Alam,et al.  Deterministic fabrication of 3D/2D perovskite bilayer stacks for durable and efficient solar cells , 2022, Science.

[5]  Lin Mao,et al.  Fully Textured, Production‐Line Compatible Monolithic Perovskite/Silicon Tandem Solar Cells Approaching 29% Efficiency , 2022, Advanced materials.

[6]  Xingwang Zhang,et al.  Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells , 2022, Science.

[7]  Andrew H. Proppe,et al.  Quantum-size-tuned heterostructures enable efficient and stable inverted perovskite solar cells , 2022, Nature Photonics.

[8]  Xiaodang Zhang,et al.  Wide Bandgap Interface Layer Induced Stabilized Perovskite/Silicon Tandem Solar Cells with Stability over Ten Thousand Hours , 2021, Advanced Energy Materials.

[9]  A. Petrozza,et al.  Thermal- and Light-Induced Evolution of the 2D/3D Interface in Lead-Halide Perovskite Films , 2021, ACS applied materials & interfaces.

[10]  Liying Yang,et al.  Surface-Orientation Elimination of Vapor-Deposited PbI2 Flakes for Efficient Perovskite Synthesis on Curved Solar Cells. , 2021, ACS applied materials & interfaces.

[11]  S. Mhaisalkar,et al.  Co‐Evaporated MAPbI3 with Graded Fermi Levels Enables Highly Performing, Scalable, and Flexible p‐i‐n Perovskite Solar Cells , 2021, Advanced Functional Materials.

[12]  Barry P Rand,et al.  Organoammonium-Ion-based Perovskites Can Degrade to Pb0 via Amine–Pb(II) Coordination , 2021 .

[13]  Jianbin Xu,et al.  The selection strategy of ammonium-group organic salts in vapor deposited perovskites: From dimension regulation to passivation , 2021 .

[14]  Hongkai Wu,et al.  Tuning an Electrode Work Function Using Organometallic Complexes in Inverted Perovskite Solar Cells. , 2021, Journal of the American Chemical Society.

[15]  Jinsong Hu,et al.  Strain in perovskite solar cells: origins, impacts and regulation , 2021, National science review.

[16]  S. Albrecht,et al.  Efficient Wide-Bandgap Mixed-Cation and Mixed-Halide Perovskite Solar Cells by Vacuum Deposition , 2021, ACS energy letters.

[17]  Yu-Hao Deng,et al.  Analysis of misidentifications in TEM characterisation of organic‐inorganic hybrid perovskite material , 2021, Journal of microscopy.

[18]  A. Bond,et al.  Control of crystal symmetry breaking with halogen substituted benzylammonium in layered hybrid metal-halide perovskites. , 2020, Journal of the American Chemical Society.

[19]  Qiaofei Xu,et al.  In Situ Observation of Vapor-Assisted 2D-3D Heterostructure Formation for Stable and Efficient Perovskite Solar Cells. , 2020, Nano letters.

[20]  F. Palazón,et al.  Vacuum-Deposited 2D/3D Perovskite Heterojunctions , 2019, ACS Energy Letters.

[21]  Liying Yang,et al.  Reducing Defects in Perovskite Solar Cells with White Light Illumination-Assisted Synthesis , 2019, ACS Energy Letters.

[22]  M. Grätzel,et al.  Ultrahydrophobic 3D/2D fluoroarene bilayer-based water-resistant perovskite solar cells with efficiencies exceeding 22% , 2019, Science Advances.

[23]  Qiang Sun,et al.  Layered Ruddlesden–Popper Efficient Perovskite Solar Cells with Controlled Quantum and Dielectric Confinement Introduced via Doping , 2019, Advanced Functional Materials.

[24]  Jianbin Xu,et al.  Stable and scalable 3D-2D planar heterojunction perovskite solar cells via vapor deposition , 2019, Nano Energy.

[25]  Pengwan Chen,et al.  Strain engineering in perovskite solar cells and its impacts on carrier dynamics , 2019, Nature Communications.

[26]  Jun Ji,et al.  Planar p–n homojunction perovskite solar cells with efficiency exceeding 21.3% , 2019, Nature Energy.

[27]  Guozhen Liu,et al.  Introduction of Hydrophobic Ammonium Salts with Halogen Functional Groups for High‐Efficiency and Stable 2D/3D Perovskite Solar Cells , 2019, Advanced Functional Materials.

[28]  Jiangyu Li,et al.  Atomic scale insights into structure instability and decomposition pathway of methylammonium lead iodide perovskite , 2018, Nature Communications.

[29]  Yu Cao,et al.  Benzylamine‐Treated Wide‐Bandgap Perovskite with High Thermal‐Photostability and Photovoltaic Performance , 2017 .

[30]  R. Mathies,et al.  Critical Role of Methylammonium Librational Motion in Methylammonium Lead Iodide (CH3NH3PbI3) Perovskite Photochemistry. , 2017, Nano letters.

[31]  Mohammad Khaja Nazeeruddin,et al.  One-Year stable perovskite solar cells by 2D/3D interface engineering , 2017, Nature Communications.

[32]  Wei Geng,et al.  Phenylalkylamine Passivation of Organolead Halide Perovskites Enabling High‐Efficiency and Air‐Stable Photovoltaic Cells , 2016, Advanced materials.

[33]  Yongli Gao,et al.  Qualifying composition dependent p and n self-doping in CH3NH3PbI3 , 2014 .

[34]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[35]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.