RESISTÊNCIA DE PLANTAS AOS HERBICIDAS INIBIDORES DA ACETOLACTATO SINTASE 1 Plant Resistance to Acetolactate Synthase-Inhibiting Herbicides

Herbicide resistance in plants arises mostly through mutation or pre-existence of genes that confer resistance to the population. When using herbicides inhibitors of the acetolactate synthase (ALS), resistance has occurred in weeds as well as in crops. This literature review was conducted to discuss biochemical, genetic, and molecular aspects of plant resistance to ALS inhibitors, its effects on weed ecophysiology and mutations which confer resistance to weeds, as well as the possibilities to develop resistant crops to ALS inhibitors. In weeds, resistance to ALS-inhibiting herbicides results from one or more mutations in the gene that codifies the ALS, which possesses dominant or semi-dominant characteristics when resistance is codified by one gene. Substitutions on a single nucleotide sequence cause alterations in the ALS, conferring resistance to herbicides inhibitors of this enzyme. Although the resistant biotype presents genetic and enzymatic alteration, when compared to the susceptible biotype, the ecophysiological behaviour of resistant and susceptible biotypes is similar. Resistant cultivars have already been developed in various crops, including rice and corn, which vary in their level of resistance to different chemical groups of ALS-inhibiting herbicides.

[1]  Wilhelm Gruissem,et al.  Biochemistry & Molecular Biology of Plants , 2002 .

[2]  Antonio Alberto Da Silva,et al.  Herança da resistência aos herbicidas inibidores da ALS em biótipos da planta daninha Euphorbia heterophylla , 2001 .

[3]  P. J. Christoffoleti Análise comparativa do crescimento de biótipos de picão-preto (Bidens pilosa) resistente e suscetível aos herbicidas inibidores da ALS , 2001 .

[4]  P. J. Christoffoleti,et al.  Manejo de populações de plantas daninhas resistentes aos herbicidas inibidores da acetolactato sintase , 2001 .

[5]  Michael W. Marshall,et al.  Gene flow, growth, and competitiveness of imazethapyr-resistant common sunflower , 2001, Weed Science.

[6]  A. M. Brighenti,et al.  Análise de crescimento de biótipos de amendoim-bravo (Euphorbia heterophylla) resistente e suscetível aos herbicidas inibidores da ALS , 2001 .

[7]  D. Poston,et al.  Imidazolinone resistance in several Amaranthus hybridus populations , 2000, Weed Science.

[8]  M. Owen,et al.  Comparison of acetolactate synthase enzyme inhibition among resistant and susceptible Xanthium strumarium biotypes , 2000, Weed Science.

[9]  Mahon,et al.  The ability of pea transformation technology to transfer genes into peas adapted to western Canadian growing conditions. , 2000, Plant science : an international journal of experimental plant biology.

[10]  R. A. Vidal,et al.  Análise de crescimento de biótipos de leiteira (Euphorbia heterophylla) resistentes e suscetível aos herbicidas inibidores da ALS , 2000 .

[11]  A. Merotto,et al.  Tolerância da cultivar de soja coodetec 201 aos herbicidas inibidores de als , 2000 .

[12]  D. Shaner,et al.  Imidazolinone Resistance in Smooth Pigweed (Amaranthus hybridus) Is Due to an Altered Acetolactate Synthase , 1999, Weed Technology.

[13]  R. A. Vidal,et al.  Resistência de amendoim-bravo aos herbicidas inibidores da enzima acetolactato sintase , 1999 .

[14]  D. Skinner,et al.  Transferal of herbicide resistance traits from Amaranthus palmeri to Amaranthus rudis , 1999, Weed science.

[15]  Megh Singh,et al.  Thiazopyr Stimulates Hairy Beggarticks (Bidens pilosa) Germination , 1999, Weed Technology.

[16]  C. Mallory-Smith,et al.  Physiological consequences of mutation for ALS-inhibitor resistance , 1999, Weed Science.

[17]  S. Powles,et al.  Molecular basis of resistance to acetolactate synthase-inhibiting herbicides in Sisymbrium orientale and Brassica tournefortii , 1999 .

[18]  G. A. Ohmes,et al.  Inheritance of an ALS-Cross-Resistant Common Cocklebur (Xanthium strumarium) Biotype , 1999, Weed Technology.

[19]  D. Penner,et al.  Identifying Acetolactate Synthase Inhibitors for Potential Control of Quackgrass (Elytrigia repens) and Canada Thistle (Cirsium arvense) in Corn (Zea mays) , 1999, Weed Technology.

[20]  H. P. Wilson,et al.  Characterization of Imidazolinone-Resistant Smooth Pigweed (Amaranthus hybridus) , 1998, Weed Technology.

[21]  A. M. Brighenti,et al.  Resistência de amendoim - bravo aos herbicidas inibidores da enzima ALS , 1998 .

[22]  P. Tranel,et al.  A biotype of common waterhemp (Amaranthus rudis) resistant to triazine and ALS herbicides , 1998, Weed Science.

[23]  T. Wright,et al.  Cell selection and inheritance of imidazolinone resistance in sugarbeet (Beta vulgaris) , 1998, Theoretical and Applied Genetics.

[24]  L. Lotz,et al.  Germination and emergence characteristics of triazine‐susceptible and triazine‐resistant biotypes of Solanum nigrum , 1998 .

[25]  T. Wright,et al.  In vitro and whole-plant magnitude and cross-resistance characterization of two imidazolinone-resistant sugarbeet (Beta vulgaris) somatic cell selections , 1998, Weed Science.

[26]  T. Wright,et al.  Corn (Zea mays) acetolactate synthase sensitivity to four classes of ALS-inhibiting herbicides , 1998 .

[27]  N. Bascomb,et al.  Biochemical mechanism and molecular basis for ALS-inhibiting herbicide resistance in sugarbeet (Beta vulgaris) somatic cell selections , 1998, Weed Science.

[28]  Jack Dekker,et al.  Weed diversity and weed management , 1997, Weed Science.

[29]  C. Mallory-Smith,et al.  Altered acetolactate synthase activity in ALS-inhibitor resistant prickly lettuce (Lactuca serriola) , 1997, Weed Science.

[30]  P. Westra,et al.  Growth analysis of sulfonylurea-resistant and -susceptible kochia (Kochia scoparia) , 1997, Weed Science.

[31]  G. Forlani,et al.  Biochemical characterization of chlorsulfuron resistance in Cichorium intybus L var. Witloof , 1997 .

[32]  N. G. Fleck,et al.  Análise do risco da ocorrência de biotipos de plantas daninhas resistentes aos herbicidas , 1997 .

[33]  M. Jasieniuk,et al.  The Evolution and Genetics of Herbicide Resistance in Weeds , 1996, Weed Science.

[34]  J. B. Reid,et al.  A gibberellin 20-oxidase cDNA (Accession no. U58830) from pea ( Pisum sativum L.) seed (PGR 96-050) , 1996 .

[35]  M. Subramanian,et al.  A Naturally Occurring Point Mutation Confers Broad Range Tolerance to Herbicides That Target Acetolactate Synthase (*) , 1995, The Journal of Biological Chemistry.

[36]  Bahman Shafii,et al.  Growth and Competitiveness of Sulfonyhirea-Resistant and -Susceptible Kochia (Kochia scoparia) , 1994, Weed Science.

[37]  C. Mallory-Smith,et al.  DNA Sequence Variation in Domain a of the Acetolactate Synthase Genes of Herbicide-Resistant and -Susceptible Weed Biotypes , 1992, Weed Science.